Skip to main content

Large Animal Induced Pluripotent Stem Cells as Models of Human Diseases

  • Chapter
  • First Online:
Stem Cells in Animal Species: From Pre-clinic to Biodiversity

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 615 Accesses

Abstract

Pluripotent stem cells from the early embryos, the embryonic stem cells (ESC), have been the subject of intensive investigation for the past two decades. Much of the excitement surrounding ESC research has been centered on the potential of ESC in differentiating into target cell types, disease modeling, and in offering cures for intractable diseases. So far, rodents and primates are the only species from which “bonafide” ESC have been readily established and have met relatively stringent criteria of pluripotency. However, attempts to generate analogous pluripotent stem cells from other relevant domestic ungulates have been unsuccessful. While the reasons for poor outcome still remain a focus of active investigation, the establishment of induced pluripotent stem cells (iPSC) from somatic cells by upregulation of select few reprogramming factors has emerged as an attractive option. In the last few years since the inception, the iPSC field has witnessed substantial progress, with iPSC established from every major large animal species. The iPSC are playing an important role in understanding species-specific differences in pluripotency, unique requirements for their in vitro culture, and in achieving scientific and technical progress towards the establishment of authentic stem cell lines. These topics will be illustrated and discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EpiSC:

Epiblast stem cells

ESC:

Embryonic stem cells

FGF:

Fibroblast growth factor

iPSC:

Induced pluripotent stem cells

LIF:

Leukemia inhibiting factor

References

  • Alberio R, Croxall N et al (2010) Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 19(10):1627–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida-Porada G, Porada C et al (2007) The human-sheep chimeras as a model for human stem cell mobilization and evaluation of hematopoietic grafts’ potential. Exp Hematol 35(10):1594–1600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amado LC, Schuleri KH et al (2006) Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol 48(10):2116–2124

    Article  PubMed  Google Scholar 

  • Bao L et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-David U, Benvenisty N et al (2010) Genetic instability in human induced pluripotent stem cells: classification of causes and possible safeguards. Cell Cycle 9(23):4603–4604

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nun IF, Montague SC et al (2011) Induced pluripotent stem cells from highly endangered species. Nat Methods 8(10):829–831

    Article  PubMed  Google Scholar 

  • Breton A et al (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 22:611–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brevini TA, Antonini S et al (2008) Recent progress in embryonic stem cell research and its application in domestic species. Reprod Domest Anim 43(suppl 2):193–199

    Article  PubMed  Google Scholar 

  • Brons IG, Smithers LE et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195

    Article  CAS  PubMed  Google Scholar 

  • Bui HT, Kwon DN et al (2012) Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development 139(23):4330–4340

    Article  CAS  PubMed  Google Scholar 

  • Campbell KH, McWhir J et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Yang P, Pu Y, Sun X, Yin H, Zhang Y, Zhang Y, Li Y, Liu Y, Fang F, Zhang Z, Tao Y, Zhang X (2012) Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int J Biol Sci 8(4):498–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Liu J et al (2010) Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J Biol Chem 285(40):31066–31072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Liu H et al (2012) H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet. In press

    Google Scholar 

  • Cheng D et al (2012) Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One 7:e51778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dall AM, Danielsen EH et al (2002) Quantitative [18F]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant 11(8):733–746

    PubMed  Google Scholar 

  • Deleidi M, Cooper O, Hargus G, Levy A, Isacson O (2011) Oct4-induced reprogramming is required for adult brain neural stem cell differentiation into midbrain dopaminergic neurons. PLoS One 6:e19926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng Y, Liu Q et al (2012) Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors. Stem Cells Dev 21(13):2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Desponts C, Ding S (2010) Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol Biol 636:207–218

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME et al (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3:646–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esteban MA, Xu J et al (2009) Generation of induced pluripotent stem cell lines from tibetan miniature pig. J Biol Chem 284(26):17634–17640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esteban MA, Peng M et al (2010) Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life 62(4):277–282

    CAS  PubMed  Google Scholar 

  • Ezashi T, Telugu BP et al (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106(27):10993–10998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan N, Lai L (2013) Genetically modified pig models for human diseases. J Genet Genomics 40:67–73

    Article  CAS  PubMed  Google Scholar 

  • Flechon JE, Degrouard J et al (2004) Gastrulation events in the prestreak pig embryo: ultrastructure and cell markers. Genesis 38(1):13–25

    Article  PubMed  Google Scholar 

  • Fujishiro SH et al (2013) Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev 22:473–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gandolfi F, Vanelli A et al (2011) Large animal models for cardiac stem cell therapies. Theriogenology 75(8):1416–1425

    Article  CAS  PubMed  Google Scholar 

  • Geisert RD, Brookbank JW et al (1982) Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol Reprod 27(4):941–955

    Article  CAS  PubMed  Google Scholar 

  • Gu M, Nguyen PK et al (2012) Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 111(7):882–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall VJ, Kristensen M et al (2012) Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram 14(3):204–216

    CAS  PubMed  Google Scholar 

  • Han X et al (2011) Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 21:1509–1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanna J, Wernig M et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923

    Article  CAS  PubMed  Google Scholar 

  • Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Li T et al (2011) A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6(9):e24501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia F, Wilson KD et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang L, Wang J et al (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5(2):135–138

    Article  CAS  PubMed  Google Scholar 

  • Khodadadi K et al (2012) Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int 2012:429160

    Article  PubMed Central  PubMed  Google Scholar 

  • Klymiuk N, Aigner B et al (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77(3):209–221

    CAS  PubMed  Google Scholar 

  • Lee AS, Xu D et al (2011) Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem 286(37):32697–32704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Cang M et al (2011) Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 6(1):e15947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim ML, Vassiliev I et al (2011) A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhu F et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3(6):587–590

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Balehosur D et al (2012) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77(2):338–346.e331

    Google Scholar 

  • Malaver-Ortega LF, Sumer H et al (2012) The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 78(8):1749–1762

    Article  PubMed  Google Scholar 

  • Mayshar Y, Ben-David U et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7(4):521–531

    Article  CAS  PubMed  Google Scholar 

  • Mazhari R, Hare JM (2012) Translational findings from cardiovascular stem cell research. Trends Cardiovasc Med 22(1):1–6

    Article  PubMed Central  PubMed  Google Scholar 

  • Michelini M, Papini S et al (2008) Prolonged human/sheep cellular chimerism following transplantation of human hemopoietic stem cells into the ewe celomic cavity. Int J Dev Biol 52(4):365–370

    Article  CAS  PubMed  Google Scholar 

  • Montserrat N, Garreta E et al (2011) Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system. J Biol Chem 286(14):12417–12428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montserrat N, de Onate L et al (2012) Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant 21(5):815–825

    Article  PubMed  Google Scholar 

  • Nagy A, Rossant J et al (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90(18):8424–8428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy K, Sung HK et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7(3):693–702

    Article  PubMed Central  PubMed  Google Scholar 

  • Narayan AD, Chase JL et al (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 107(5):2180–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Notarianni E, Laurie S et al (1990) Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil Suppl 41:51–56

    CAS  PubMed  Google Scholar 

  • Notarianni E, Galli C et al (1991) Derivation of pluripotent, embryonic cell lines from the pig and sheep. J Reprod Fertil Suppl 43:255–260

    CAS  PubMed  Google Scholar 

  • Nowak-Imialek M, Kues W et al (2011) Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal 17(4):474–497

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T et al (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Hong H et al (2010) Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 5(3):418–428

    Article  CAS  PubMed  Google Scholar 

  • Ourednik V, Ourednik J et al (2001) Segregation of human neural stem cells in the developing primate forebrain. Science 293(5536):1820–1824

    Article  CAS  PubMed  Google Scholar 

  • Park KM, Cha SH, Ahn C, Woo HM (2013) Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet Res Commun 37:293–301

    Article  PubMed  Google Scholar 

  • Piedrahita JA, Anderson GB et al (1990) Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 34(5):865–877

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Pak Y et al (2011) Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res 21(5):849–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts RM, Telugu BP et al (2009) Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important. Cell Cycle 8(19):3078–3081

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Allegrucci C et al (2012) Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7(11):e49079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers CS, Stoltz DA et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ronen D, Benvenisty N (2012) Genomic stability in reprogramming. Curr Opin Genet Dev 22(5):444–449

    Article  CAS  PubMed  Google Scholar 

  • Sartori C et al (2012) Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram 14:8–19

    CAS  PubMed  Google Scholar 

  • Shimada H, Nakada A et al (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77(1):2

    Article  CAS  PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sumer H, Liu J et al (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89(9):2708–2716

    Article  CAS  PubMed  Google Scholar 

  • Swindle MM (2007) Swine in the laboratory: surgery, anesthesia, imaging, and experimental techniques. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Takahashi K, Tanabe K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takebe T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  CAS  PubMed  Google Scholar 

  • Tavernier G, Wolfrum K et al (2012) Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials 33(2):412–417

    Article  CAS  PubMed  Google Scholar 

  • Telugu BP, Ezashi T et al (2010a) Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int J Dev Biol 54(11–12):1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Telugu BP, Ezashi T et al (2010b) The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev 6(1):31–41

    Article  PubMed  Google Scholar 

  • Tesar PJ, Chenoweth JG et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  CAS  PubMed  Google Scholar 

  • Vejlsted M, Du Y et al (2006) Post-hatching development of the porcine and bovine embryo–defining criteria for expected development in vivo and in vitro. Theriogenology 65(1):153–165

    Article  PubMed  Google Scholar 

  • Verfaillie CM (2000) Meeting report on an NHLBI workshop on ex vivo expansion of stem cells, July 29, 1999, Washington, D.C. National Heart Lung and Blood Institute. Exp Hematol 28(4):361–364

    Article  CAS  PubMed  Google Scholar 

  • Vodicka P, Smetana K Jr et al (2005) The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 1049:161–171

    Article  PubMed  Google Scholar 

  • Wang Y, Zheng CG et al (2012) Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res 22(4):637–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West FD, Terlouw SL et al (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19(8):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • West FD et al (2011) Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29:1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Whitworth DJ, Ovchinnikov DA et al (2012) Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 21(12):2288–2297

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Cantilena A et al (2010) No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 28(4):687–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Z, Chen J et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Gentile L et al (2011) Efficient derivation of pluripotent stem cells from siRNA-mediated Cdx2-deficient mouse embryos. Stem Cells Dev 20(3):485–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JY, Mumaw JL, Liu Y, Stice SL, West FD (2013) SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplant 22:945–959

    Article  PubMed  Google Scholar 

  • Yu J, Hu K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zanjani ED, Mackintosh FR et al (1991a) Hematopoietic chimerism in sheep and nonhuman primates by in utero transplantation of fetal hematopoietic stem cells. Blood Cells 17(2):349–363, discussion 364–366

    CAS  PubMed  Google Scholar 

  • Zanjani ED, Pallavicini MG et al (1991b) Successful stable xenograft of human fetal hemopoietic cells in preimmune fetal sheep. Trans Assoc Am Physicians 104:181–186

    CAS  PubMed  Google Scholar 

  • Zanjani ED, Flake AW et al (1994a) Long-term repopulating ability of xenogeneic transplanted human fetal liver hematopoietic stem cells in sheep. J Clin Invest 93(3):1051–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zanjani ED, Silva MR et al (1994b) Retention and multilineage expression of human hematopoietic stem cells in human-sheep chimeras. Blood Cells 20(2–3):331–338, discussion 338–340

    CAS  PubMed  Google Scholar 

  • Zeng F, Chen M et al (2005) Identification and characterization of engrafted human cells in human/goat xenogeneic transplantation chimerism. DNA Cell Biol 24(7):403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Li W et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461(7260):86–90

    Article  CAS  PubMed  Google Scholar 

  • Zhong B, Trobridge GD et al (2011) Efficient generation of nonhuman primate induced pluripotent stem cells. Stem Cells Dev 20(5):795–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou H, Wu S et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang W et al (2011) Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 29(6):972–980

    Article  CAS  PubMed  Google Scholar 

  • Zhu FF, Zhang PB et al (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 54(9):2325–2336

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Prakash V. L. Telugu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nandal, A., Telugu, B.P.V.L. (2014). Large Animal Induced Pluripotent Stem Cells as Models of Human Diseases. In: Brevini, T. (eds) Stem Cells in Animal Species: From Pre-clinic to Biodiversity. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-03572-7_3

Download citation

Publish with us

Policies and ethics