Skip to main content

Understanding Tissue Repair Through the Activation of Endogenous Resident Stem Cells

  • Chapter
  • First Online:
Stem Cells in Animal Species: From Pre-clinic to Biodiversity

Abstract

Intensive research and still much controversy on the adult mammalian heart’s capacity for self-renewal has finally brought a consensus that new cardiomyocytes are indeed formed throughout adult mammalian life. However, the physiological significance of this myocyte renewal, the origin of the new myocytes as well as the rate of adult myocyte turnover have been highly debated. Indeed, while some have calculated a yearly cardiomyocyte turnover of about 1 %, others calculated 4–10 % and some as high as 40 %/year. This very high spread on the “measured” values of such an important phenomenon raises questions about the conceptual and methodological approaches used so far. Recently, using an experimental protocol of severe diffuse myocardial damage, combined with several genetic murine models of fate mapping for cell lineage tracing along with cell transplantation approaches, we have ultimately demonstrated that the endogenous resident cardiac stem/progenitor cells (eCSCs) fulfil the criteria as the cell type necessary and sufficient for myocyte regeneration, leading to complete cellular, anatomical and functional myocardial recovery. The presence of this regenerative agent within the adult mammalian heart, including the human, supports the view that the heart has the potential to repair itself if the eCSCs can be properly stimulated. It is thus predicted that a better understanding of eCSC biology, in order to fully exploit their regeneration potential, will ultimately lead to developing realistic and clinically applicable myocardial regeneration strategies for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akashi YJ, Goldstein DS et al (2008) Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation 118:2754–2762

    Article  PubMed  Google Scholar 

  • Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243

    Article  CAS  PubMed  Google Scholar 

  • Arsalan M, Woitek F et al (2012) Distribution of cardiac stem cells in the human heart. ISRN Cardiol 2012:483407

    Article  PubMed Central  PubMed  Google Scholar 

  • Bearzi C, Rota M et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beltrami AP, Urbanek K et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    Article  CAS  PubMed  Google Scholar 

  • Beltrami AP, Barlucchi L et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Bhardwaj RD et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bersell K, Arab S et al (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270

    Article  CAS  PubMed  Google Scholar 

  • Bolli R, Chugh AR et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Article  PubMed Central  PubMed  Google Scholar 

  • Boström P, Mann N et al (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083

    Article  PubMed Central  PubMed  Google Scholar 

  • Buckingham M, Montarras D (2008) Skeletal muscle stem cells. Curr Opin Genet Dev 18:330–336

    Article  CAS  PubMed  Google Scholar 

  • Chien KR, Olson EN (2002) Converging pathways and principles in heart development and disease: CV@CSH. Cell 110:153–162

    Article  CAS  PubMed  Google Scholar 

  • Chimenti C, Kajstura J et al (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93:604–613

    Article  CAS  PubMed  Google Scholar 

  • Chong JJ, Chandrakanthan V et al (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chugh AR, Beache GM et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54–S64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crottogini A, Meckert PC et al (2003) Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum Gene Ther 14(14):1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg CA, Burch JB et al (2006) Bone marrow cells transdifferentiate to cardiomyocytes when introduced into the embryonic heart. Stem Cells 24:1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Ellison GM, Torella D et al (2007a) Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nat Clin Pract Cardiovasc Med 4(suppl 1):S52–S59

    Article  CAS  PubMed  Google Scholar 

  • Ellison GM, Torella D et al (2007b) Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem 282:11397–11409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellison GM, Torella D et al (2009) Use of heterologous non-matched cardiac stem cells (CSCs) without immunosuppression as an effective regenerating agent in a porcine model of acute myocardial infarction. Eur Heart J 30(Abstract Supplement):495

    Google Scholar 

  • Ellison GM, Galuppo V et al (2010) Cardiac stem and progenitor cell identification: different markers for the same cell? Front Biosci 2:641–652

    Article  Google Scholar 

  • Ellison GM, Torella D et al (2011) Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol 58(9):977–986

    Article  CAS  PubMed  Google Scholar 

  • Ellison GM, Waring CD et al (2012a) Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 98:5–10

    Article  CAS  PubMed  Google Scholar 

  • Ellison GM, Nadal-Ginard B et al (2012b) Optimizing cardiac repair and regeneration through activation of the endogenous cardiac stem cell compartment. J Cardiovasc Transl Res 5(5):667–677

    Article  PubMed  Google Scholar 

  • Ellison GM, Vicinanza C et al (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154:827–842

    Article  CAS  PubMed  Google Scholar 

  • Formiga FR, Pelacho B et al (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J Control Release 147(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Fransioli J, Bailey B et al (2008) Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells 26(5):1315–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henry TD, Annex BH et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Hofmann M, Wollert KC et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  • Hsieh PC, Segers VF et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang XP, Sun Z et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    Article  CAS  PubMed  Google Scholar 

  • Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Janssens S (2010) Stem cells in the treatment of heart disease. Annu Rev Med 61:287–300

    Article  CAS  PubMed  Google Scholar 

  • Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    Article  PubMed  Google Scholar 

  • Jesty SA, Steffey MA et al (2012) c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A 109(33):13380–13385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahan BD (2011) Fifty years in the vineyard of transplantation: looking back. Transplant Proc 43:2853–2859

    Article  CAS  PubMed  Google Scholar 

  • Kajstura J, Rota M et al (2012) Cardiomyogenesis in the aging and failing human heart. Circulation 126:1869–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasasbeh E, Murphy A et al (2011) Neuregulin-1β improves cardiac remodeling after myocardial infarction in swine. Circulation 124:Abstract 15531

    Google Scholar 

  • Kattman SJ, Huber TL et al (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732

    Article  CAS  PubMed  Google Scholar 

  • Kopp JL, Dubois CL et al (2011) Progenitor cell domains in the developing and adult pancreas. Cell Cycle 10:1921–1927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kotton DN (2012) Next generation regeneration: the hope and hype of lung stem cell research. Am J Respir Crit Care Med 185(12):1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Kühn B, Del Monte F et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969

    Article  PubMed  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laugwitz KL, Moretti A et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  CAS  PubMed  Google Scholar 

  • Linke A, Müller P et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 102(25):8966–8971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loffredo FS, Steinhauser ML et al (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makkar RR, Smith RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  Google Scholar 

  • Malliaras K, Li TS et al (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125:100–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin CM, Meeson AP et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    Article  CAS  PubMed  Google Scholar 

  • Matsubara H, Kyoto Prefectural University School of Medicine (2012) AutoLogous human cardiac-derived stem cell to treat ischemic cardiomyopathy (ALCADIA). ClinicalTrials.gov. Available from: http://clinicaltrials.gov/ct2/show/NCT 00981006

    Google Scholar 

  • Matsuura K, Nagai T et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Article  CAS  PubMed  Google Scholar 

  • Medicetty S, Wiktor D et al (2012) Percutaneous adventitial delivery of allogeneic bone marrow derived stem cells via infarct related artery improves long-term ventricular function in acute myocardial infarction. Cell Transplant 21(6):1109–1120

    Article  PubMed  Google Scholar 

  • Messina E, De Angelis L et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Caron L et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Nadal-Ginard B (1978) Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell 15:855–864

    Article  CAS  PubMed  Google Scholar 

  • Nadal-Ginard B, Kajstura J et al (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Taffet GE et al (2001) Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A 98:10308–10313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh H, Bradfute SB et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orlic D, Kajstura J et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  • Penn MS, Ellis S et al (2012) Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ Res 110:304–311

    Article  CAS  PubMed  Google Scholar 

  • Quaini F, Urbanek K et al (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  • Quevedo HC, Hatzistergos KE et al (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A 106:14022–14027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranganath SH, Levy O et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen TL, Raveendran G et al (2011) Getting to the heart of myocardial stem cells and cell therapy. Circulation 123:1771–1779

    Article  PubMed Central  PubMed  Google Scholar 

  • Reule S, Gupta S (2011) Kidney regeneration and resident stem cells. Organogenesis 7:135–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roger VL (2013) Epidemiology of heart failure. Circ Res 113:646–659

    Article  CAS  PubMed  Google Scholar 

  • Rountree CB, Mishra L et al (2012) Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 55:298–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Senyo SE, Steinhauser ML et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smart N, Bollini S et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441:1097–1099

    Article  CAS  PubMed  Google Scholar 

  • Suh H, Deng W et al (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25:253–275

    Article  CAS  PubMed  Google Scholar 

  • Terzic A, Nelson TJ (2010) Regenerative medicine advancing health care 2020. J Am Coll Cardiol 55:2254–2257

    Article  PubMed  Google Scholar 

  • Torella D, Rota M et al (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94:514–524

    Article  CAS  PubMed  Google Scholar 

  • Torella D, Ellison GM et al (2006a) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 3(suppl 1):S8–S13

    Article  CAS  PubMed  Google Scholar 

  • Torella D, Ellison GM et al (2006b) Biological properties and regenerative potential, in vitro and in vivo, of human cardiac stem cells isolated from each of the four chambers of the adult human heart. Circulation 114:87

    Google Scholar 

  • Torella D, Ellison GM et al (2007) Resident cardiac stem cells. Cell Mol Life Sci 64:661–673

    Article  CAS  PubMed  Google Scholar 

  • Urbanek K, Quaini F et al (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A 100:10440–10445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urbanek K, Torella D et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102:8692–8697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wadugu B, Kühn B (2012) The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 302(11):H2139–H2147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waring CD, Vicinanza C et al (2012) The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J. Oct 25. [Epub ahead of print] PMID: 23100284

    Google Scholar 

  • Wu SM, Fujiwara Y et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zeng F et al (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    Article  CAS  PubMed  Google Scholar 

  • Zaruba MM, Soonpaa M et al (2010) Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation 11:121(18)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Torella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aquila, I. et al. (2014). Understanding Tissue Repair Through the Activation of Endogenous Resident Stem Cells. In: Brevini, T. (eds) Stem Cells in Animal Species: From Pre-clinic to Biodiversity. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-03572-7_2

Download citation

Publish with us

Policies and ethics