Applications of Functional Analysis to Partial Differential Equations

  • Joël ChaskalovicEmail author
Part of the Mathematical Engineering book series (MATHENGIN)


The classic example used to illustrate the basic problems raised by the mathematical analysis of partial differential equations (PDEs) concerns the mechanics of deformable solids, and in particular a homogeneous and isotropic elastic membrane occupying a region \(\Omega \) in the plane \((O,\mathbf {x},\mathbf {y})\).


Partial Differential Equations Weak Derivatives Trace Theorem Hadamard Well-posedness Regular Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Brézis, Analyse fonctionnelle : théorie et applications (Masson, Paris, 1983)Google Scholar
  2. 2.
    L. Schwartz, Méthodes mathématiques pour les sciences physiques (Hermann, Paris, 1983)Google Scholar
  3. 3.
    P.A. Raviart, J.M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles (Masson, Paris, 1988)Google Scholar
  4. 4.
    A. Ern, J.L. Guermond, Eléments finis: théorie, applications, mise en œuvre, (Springer/SMAI, Heidelberg, 2002)Google Scholar
  5. 5.
    R.A. Adams, J.J.F. Fournier, in Sobolev Spaces. Pure and Applied Mathematics Series (Elsevier, Amsterdam, 2003)Google Scholar
  6. 6.
    R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques (Masson, Paris, 1987)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut Jean le Rond d’Alembert, University Pierre and Marie CurieParisFrance

Personalised recommendations