Skip to main content

Random Intersection Graph Process

  • Conference paper
Algorithms and Models for the Web Graph (WAW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8305))

Included in the following conference series:

Abstract

We introduce a random intersection graph process aimed at modeling sparse evolving affiliation networks. We establish the asymptotic degree distribution and provide explicit asymptotic formulas for assortativity and clustering coefficients showing how these edge dependence characteristics vary over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 96–107. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. The Annals of Applied Probability 23, 1254–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloznelis, M., Damarackas, J.: Degree distribution of an inhomogeneous random intersection graph. The Electronic Journal of Combinatorics 20(3), R3 (2013)

    Google Scholar 

  4. Bloznelis, M., Jaworski, J., Kurauskas, V.: Assortativity and clustering of sparse random intersection graphs. Electronic Journal of Probability 18, R38 (2013)

    Google Scholar 

  5. Bloznelis, M., Kurauskas, V.: Clustering function: a measure of social influence, http://arxiv.org/abs/1207.4941

  6. Bloznelis, M., Karoński, M.: Random intersection graph process, http://arxiv.org/abs/1301.5579

  7. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution and clustering. Probab. Engrg. Inform. Sci. 23, 661–674 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. ACM, New York (2011)

    Book  MATH  Google Scholar 

  9. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their applications. Electronic Notes in Discrete Mathematics 10, 129–132 (2001)

    Article  MathSciNet  Google Scholar 

  10. Godehardt, E., Jaworski, J., Rybarczyk, K.: Clustering coefficients of random intersection graphs. Studies in Classification, Data Analysis and Knowledge Organization, pp. 243–253. Springer, Heidelberg (2012)

    Google Scholar 

  11. Guillaume, J.L., Latapy, M.: Bipartite structure of all complex networks. Inform. Process. Lett. 90, 215–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaworski, J., Karoński, M., Stark, D.: The degree of a typical vertex in generalized random intersection graph models. Discrete Mathematics 306, 2152–2165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection graphs: The subgraph problem. Combinatorics, Probability and Computing 8, 131–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martin, T., Ball, B., Karrer, B., Newman, M.E.J.: Coauthorship and citation patterns in the Physical Review. Phys. Rev. E 88, 012814 (2013)

    Article  Google Scholar 

  15. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Physical Review E 64, 025102 (2001)

    Article  Google Scholar 

  16. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99(suppl. 1), 2566–2572 (2002)

    Article  MATH  Google Scholar 

  17. Stark, D.: The vertex degree distribution of random intersection graphs. Random Structures and Algorithms 24, 249–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steele, J.M.: Le Cam’s inequality and Poisson approximations. The American Mathematical Monthly 101, 48–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Bloznelis, M., Karoński, M. (2013). Random Intersection Graph Process. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2013. Lecture Notes in Computer Science, vol 8305. Springer, Cham. https://doi.org/10.1007/978-3-319-03536-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03536-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03535-2

  • Online ISBN: 978-3-319-03536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics