Skip to main content

CDoT: Optimizing MAP Queries on Trees

  • Conference paper
Book cover AI*IA 2013: Advances in Artificial Intelligence (AI*IA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8249))

Included in the following conference series:

  • 1253 Accesses

Abstract

Among the graph structures underlying Probabilistic Graphical Models, trees are valuable tools for modeling several interesting problems, such as linguistic parsing, phylogenetic analysis, and music harmony analysis. In this paper we introduce CDoT, a novel exact algorithm for answering Maximum a Posteriori queries on tree structures. We discuss its properties and study its asymptotic complexity; we also provide an empirical assessment of its performances, showing that the proposed algorithm substantially improves over a dynamic programming based competitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  2. Heckerman, D., Horvitz, E., Nathwani, B.: Toward normative expert systems: The Pathfinder project. Knowledge Systems Laboratory, Stanford University (1992)

    Google Scholar 

  3. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)

    Article  Google Scholar 

  4. Sun, Y., Deng, H., Han, J.: Probabilistic models for text mining. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 259–295. Springer (2012)

    Google Scholar 

  5. Johnson, M., Griffiths, T., Goldwater, S.: Bayesian inference for PCFGs via Markov Chain Monte Carlo. In: Human Language Technologies 2007, pp. 139–146 (2007)

    Google Scholar 

  6. Csűrös, M., Miklós, I.: Streamlining and large ancestral genomes in archaea inferred with a phylogenetic birth-and-death model. Mol. Bio. Evol. 26(9) (2009)

    Google Scholar 

  7. Paiement, J.F., Eck, D., Bengio, S.: A Probabilistic Model for Chord Progressions. In: Proc. of the 6th Int. Conf. on Music Information Retrieval, London (2005)

    Google Scholar 

  8. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  9. Esposito, R., Radicioni, D.P.: CarpeDiem: Optimizing the Viterbi Algorithm and Applications to Supervised Sequential Learning. JMLR 10, 1851–1880 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Belanger, D., Passos, A., Riedel, S., McCallum, A.: Speeding up MAP with Column Generation and Block Regularization. In: Proc. of the ICML Workshop on Inferning: Interactions Between Inference and Learning. Omnipress (2012)

    Google Scholar 

  11. Murphy, K., Weiss, Y., Jordan, M.: Loopy belief propagation for approximate inference: An empirical study. In: Proc. of the 15th Conf. on Uncertainty in Art. Intell., pp. 467–475 (1999)

    Google Scholar 

  12. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theory 51(11), 3697–3717 (2005)

    Article  MathSciNet  Google Scholar 

  13. Marinescu, R., Kask, K., Dechter, R.: Systematic vs. non-systematic algorithms for solving the mpe task. In: Proc. of the 9th Conf. on Uncertainty in Artificial Intelligence, pp. 394–402. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  14. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  15. Zhang, N., Poole, D.: Exploiting causal independence in bayesian network inference. JAIR 5, 301–328 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Weiss, Y., Freeman, W.: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans. Inf. Theory 47(2), 736–744 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaji, N., Fujiwara, Y., Yoshinaga, N., Kitsuregawa, M.: Efficient staggered decoding for sequence labeling. In: Proc. of the 48th Meeting of the ACL, pp. 485–494 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Esposito, R., Radicioni, D.P., Visconti, A. (2013). CDoT: Optimizing MAP Queries on Trees. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds) AI*IA 2013: Advances in Artificial Intelligence. AI*IA 2013. Lecture Notes in Computer Science(), vol 8249. Springer, Cham. https://doi.org/10.1007/978-3-319-03524-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03524-6_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03523-9

  • Online ISBN: 978-3-319-03524-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics