Skip to main content

Numeric Kernel for Reasoning about Plans Involving Numeric Fluents

  • Conference paper
AI*IA 2013: Advances in Artificial Intelligence (AI*IA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8249))

Included in the following conference series:

Abstract

The paper proposes the notion of numeric kernel as a means for reasoning about plans involving numeric state variables, i.e. numeric fluents. A numeric kernel identifies the sufficient and necessary conditions that allow to directly - without any search and any propagation - assess whether a plan is valid in a specific world state. The notion generalizes the propositional kernels defined for the STRIPS language, to support domains involving numeric information as well. A regression method to build such kernels is reported, and its correctness is theoretically proved. To evaluate the numeric kernels contribution, we report two possible repair strategies that can be employed as a direct application of the numeric kernel properties. Results show the promise of the approach both from the computational point of view and in terms of plan quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann, J.: The metric-ff planning system: Translating “ignoring delete lists” to numeric state variables. Journal of Artificial Intelligence Research 20, 291–341 (2003)

    MATH  Google Scholar 

  2. Gerevini, A., Saetti, I., Serina, A.: An approach to efficient planning with numerical fluents and multi-criteria plan quality. Artificial Intelligence 172(8-9), 899–944 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coles, A.J., Coles, A., Fox, M., Long, D.: Colin: Planning with continuous linear numeric change. Journal of Artificial Intelligence Research 44, 1–96 (2012)

    MATH  Google Scholar 

  4. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

    MATH  Google Scholar 

  5. Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-chaining partial-order planning. In: Proc. of International Conference on Automated Planning and Scheduling, ICAPS 2010 (2010)

    Google Scholar 

  6. Conrad, P.R., Williams, B.C.: Drake: An efficient executive for temporal plans with choice. Journal of Artificial Intelligence Research 42, 607–659 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49(1-3), 61–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kvarnström, J., Heintz, F., Doherty, P.: A temporal logic-based planning and execution monitoring system. In: Proc. of International Conference on Automated Planning and Scheduling (ICAPS 2008), pp. 198–205 (2008)

    Google Scholar 

  9. Policella, N., Cesta, A., Oddi, A., Smith, S.: Solve-and-robustify. Journal of Scheduling 12, 299–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stergiou, K., Koubarakis, M.: Backtracking algorithms for disjunctions of temporal constraints. Artificial Intelligence 120(1), 81–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fikes, R., Hart, P.E., Nilsson, N.J.: Learning and executing generalized robot plans. Artificial Intelligence 3(1-3), 251–288 (1972)

    Article  Google Scholar 

  12. Fritz, C., McIlraith, S.A.: Monitoring plan optimality during execution. In: Proc. of International Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 144–151 (2007)

    Google Scholar 

  13. Garrido, A., Guzman, C., Onaindia, E.: Anytime plan-adaptation for continuous planning. In: Proc. of P&S Special Interest Group Workshop, PLANSIG 2010 (2010)

    Google Scholar 

  14. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent environments. Journal of Autonomous Agents and Multiagent Systems 19(3), 297–331 (2009)

    Article  Google Scholar 

  15. Chen, Y., Wah, B.W., Hsu, C.-W.: Temporal planning using subgoal partitioning and resolution in sgplan. Journal of Artificial Intelligence Research 26, 369 (2006)

    Google Scholar 

  16. Scala, E.: Reconfiguration and Replanning for robust Execution of Plans Involving Continous and Consumable Resources. Phd thesis in computer science, Department of Computer Science - Universita’ di Torino (2013)

    Google Scholar 

  17. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and empirical analysis. Artificial Intelligence 76(1-2), 427–454 (1995)

    Article  Google Scholar 

  18. Gerevini, A., Saetti, A., Serina, I.: Case-based planning for problems with real-valued fluents: Kernel functions for effective plan retrieval. In: Proc. of European Conference on AI (ECAI 2012), pp. 348–353 (2012)

    Google Scholar 

  19. van der Krogt, R., de Weerdt, M.: Plan repair as an extension of planning. In: Proc. of International Conference on Automated Planning and Scheduling (ICAPS 2005), pp. 161–170 (2005)

    Google Scholar 

  20. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan repair. In: Proc. of International Conference on Automated Planning and Scheduling (ICAPS 2006), pp. 212–221 (2006)

    Google Scholar 

  21. Gerevini, A.E., Roubíčková, A., Saetti, A., Serina, I.: On the plan-library maintenance problem in a case-based planner. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 119–133. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Scala, E. (2013). Numeric Kernel for Reasoning about Plans Involving Numeric Fluents. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds) AI*IA 2013: Advances in Artificial Intelligence. AI*IA 2013. Lecture Notes in Computer Science(), vol 8249. Springer, Cham. https://doi.org/10.1007/978-3-319-03524-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03524-6_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03523-9

  • Online ISBN: 978-3-319-03524-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics