Skip to main content

Multi-precision Squaring for Public-Key Cryptography on Embedded Microprocessors

  • Conference paper
Progress in Cryptology – INDOCRYPT 2013 (INDOCRYPT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8250))

Included in the following conference series:

Abstract

In the paper, we revisit the “Lazy Doubling” (LD) method for multi-precision squaring, which reduces the number of addition operations by deferring the doubling process so that it can be performed on accumulated results. The original LD method has to employ carry-catcher registers to store carry values, which reduces the number of general purpose registers available for optimization of the implementation. Furthermore, the LD method adopts the idea of hybrid multiplication to separate the partial products into several product blocks, which prevents the doubling process to be conducted on fully accumulated intermediate results. To overcome these deficiencies of the LD method and improve the performance of multi-precision squaring, we propose a novel and flexible method named “Sliding Block Doubling” (SBD). The SBD method delays the doubling process till the very end of the partial-product computation and then doubles the result by simply shifting it one bit to the left. In order to further reduce the overhead of doubling, we also optimize the execution process for updating carry values and adopt the product-scanning method for efficient computation of the partial products. Our experimental results on an AVR ATmega128 processor show that the SBD method outperforms state-of-the-art implementations by a factor of between 3.5% and 4.4% for operands ranging from 128 bits to 192 bits.

This work was supported by the Industrial Strategic Technology Development Program (No.10043907, Development of high performance IoT device and Open Platform with Intelligent Software) funded by the Ministry of Science, ICT & Future Planning (MSIF, Korea).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atmel Corporation. ATmega128(L) Datasheet (Rev. 2467O–AVR–10/06) (October 2006), http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

  2. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Systems Journal 29(4), 526–538 (1990)

    Article  Google Scholar 

  3. Großschädl, J., Avanzi, R.M., Savaş, E., Tillich, S.: Energy-efficient software implementation of long integer modular arithmetic. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Hsieh, P.Y., Laih, C.S.: An exception handling model and its application to the multiple-precision integer library. Ph.D. Thesis, Master of Science, Japan (December 2003)

    Google Scholar 

  6. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryptography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Koblitz, N.I.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee, Y., Kim, I.-H., Park, Y.: Improved multi-precision squaring for low-end RISC microcontrollers. Journal of Systems and Software 86(1), 60–71 (2013)

    Article  Google Scholar 

  9. Liu, Z., Großschädl, J., Kizhvatov, I.: Efficient and side-channel resistant RSA implementation for 8-bit AVR microcontrollers. In: Proceedings of the 1st International Workshop on the Security of the Internet of Things (SECIOT 2010). IEEE Computer Society Press (2010), https://www.nics.uma.es/seciot10/files/pdf/liu_seciot10_paper.pdf

  10. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press Series on Discrete Mathematics and Its Applications. CRC Press (1996)

    Google Scholar 

  11. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  12. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for public key cryptography. Cryptology ePrint Archive, Report 2007/299 (2007) Available for download, http://eprint.iacr.org

  14. Seo, H., Kim, H.: Multi-precision multiplication for public-key cryptography on embedded microprocessors. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 55–67. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  16. Uhsadel, L., Poschmann, A., Paar, C.: Enabling full-size public-key algorithms on 8-bit sensor nodes. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 73–86. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Zhang, Y., Großschädl, J.: Efficient prime-field arithmetic for elliptic curve cryptography on wireless sensor nodes. In: Proceedings of the 1st International Conference on Computer Science and Network Technology, ICCSNT 2011, pp. 459–466. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Seo, H., Liu, Z., Choi, J., Kim, H. (2013). Multi-precision Squaring for Public-Key Cryptography on Embedded Microprocessors. In: Paul, G., Vaudenay, S. (eds) Progress in Cryptology – INDOCRYPT 2013. INDOCRYPT 2013. Lecture Notes in Computer Science, vol 8250. Springer, Cham. https://doi.org/10.1007/978-3-319-03515-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03515-4_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03514-7

  • Online ISBN: 978-3-319-03515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics