Skip to main content

Shell Microstructure and Shell Architecture

  • Chapter
  • First Online:
Mollusk shells as bio-geo-archives

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 690 Accesses

Abstract

This chapter is focused on the analysis of the shell microstructure of different taxa and on how this information can be used for paleoenvironmental interpretations. A physic-chemical analysis on Modern, Holocene and Pleistocene shells of the purple clam Amiantis purpurata helps discern the structural changes during early diagenesis. In addition, the analyses of the microstructure of two other bivalves (Glycymeris longior and Ameghinomya antiqua) from the same region explain the differences in the degree of fragmentation in both species as a result of different structural features. Finally, cathodoluminiscence applied to Tawera gayi provides information on the skeletal growth cycles that is useful for evaluating changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbin V (1992) Fluctuation in shell composition in Nautilus (Cephaolopoda, Mollusca): evidence from cathodoluminiscence. Lethaia 25:391–400. doi:http://dx.doi.org/10.1111/j.1502-3931.1992.tb01642.x

  • Barbin V, Gaspard D (1995) Cathodoluminiscence of recent articulate brachiopod shells. Implications for growth stages and diagenesis evaluation. Geobios 18:39–45. doi:10.1007/978-3-662-04086-7_12

    Article  Google Scholar 

  • Bayer MS, Colombo F, De Vincentis NS, Duarte GA, Bolmaro R, Gordillo S (2013) Cryptic diagenetic changes in Quaternary aragonitic shells: a textural, crystallographic, and trace element study of Amiantis purpurata from Patagonia Argentina. Palaios 28:438–451. doi:http://dx.doi.org/10.2110/palo.2012.p12-111r

  • Bolmaro RE, Romano Trigueros P, Zaefferer S (2006) Estudio de la resistencia mecánica y la textura de los caparazones mineralizados de bivalvos. In: Actas 17th congresso brasileiro de engenharia e ciência dos materiais. Foz do Iguaçu, Brasil. doi:http://www.materiales-sam.org.ar/sitio/biblioteca/CONAMET-SAM2006/docs/o4.pdf

  • Boretto G, Gordillo S, Cioccale M, Colombo F, Fucks E (2013) Multi-proxy evidence of late quaternary environmental changes in the coastal area of Puerto Lobos (Northern Patagonia, Argentina). Quatern Int 305:188–205. doi:http://dx.doi.org/10.1016/j.quaint.2013.02.017

  • Brand U (1989) Aragonite-calcite transformation based on Pennsylvanian mollusks. Geol Soc Am Bull 101:377–390. doi:http://dx.doi.org/10.1130/0016-7606(1989)101<0377:ACTBOP>2.3.CO;2

  • Carter JG (1980) Guide to bivalve shell microstructures. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum, New York

    Google Scholar 

  • Carter JG (1990) Evolutionary significance of shell microstructure in the Paleotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: Carter JG (ed) Skeletal biomineralization: patterns, processes, and evolutionary trends. Van Nostrand Reinhold, New York, pp 135–296

    Google Scholar 

  • Chateigner D, Hedegaard C, Wenk HR (2000) Mollusc shell microstructures and crystallographic textures. J Struct Geol 22:1723–1735

    Google Scholar 

  • Chateigner D, Ouhenia S, Krauss C, Belkhir M, Morales M (2010) Structural distortion of biogenic aragonite in strongly textured mollusk shell layers. Nucl Instrum Methods 268:341–345. doi:http://dx.doi.org/10.1016/j.nimb.2009.07.007

  • Cherns L, Wright VP (2009) Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24:756–771. doi:http://dx.doi.org/10.2110/palo.2008.p08-134r

  • Cherns L, Wheeley JR, Wright VP (2011) Taphonomic bias in shelly faunas through time: early aragonitic dissolution and its implications for the fossil record. Taphonomy Top Geobiol 32:79–105. doi:http://dx.doi.org/10.1007/978-90-481-8643-3_3

  • De Renzi M, Ros S (2002) How do factors affecting preservation influence our perception of rates of evolution and extinction? The case of bivalve diversity during the Phanerozoic. In: De Renzi MPA, Belinchón MD (eds) Current topics on taphonomy and fossilization. Collecció Encontres, Valencia, pp 77–88

    Google Scholar 

  • Fernández López SR (2000) Tafonomía, Departamento de Paleontología, Universidad Complutense de Madrid, Madrid, doi:http://eprints.ucm.es/22003/1/087_00_Temas_Tafonomia.pdf

  • Gordillo S, Martinelli J, Cárdenas J, Bayer S (2011) Testing ecological and environmental changes during the last 6,000 years: a multiproxy approach based on the bivalve Tawera gayi from southern South America. J Mar Biol Ass UK 91:1413–1427. doi:http://dx.doi.org/10.1017/S0025315410002183

  • Hare PE, Abelson PH (1965) Amino acid composition of some calcite proteins. Carnegie Institution, Washington, pp 223–232

    Google Scholar 

  • Kidwell SM, Bosence D (1991) Taphonomy and Time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy. Plenum Press, New York, pp 115–209. doi:http://geosci-webdev.uchicago.edu/pdfs/kidwell/1991KidwellBosenceoptA.pdf

  • Lazareth CE, Lasne G, Ortlieb L (2006) Growth anomalies in Protothaca thaca (Mollusca, Veneridae) shells: markers of ENSO conditions? Climate Res 30:263–269. doi:http://dx.doi.org/10.3354/cr030263

  • Lawrence DR (1968). Taphonomy and information losses in fossil communities. Geol Soc Am Bull 79:1315–1330. doi:http://dx.doi.org/10.1130/0016-7606(1968)79[1315:TAILIF]2.0.CO;2

  • Liang Y, Zhao J, Wang L, Li F (2008) The relationship between mechanical properties and crossed-lamellar structure of mollusk shells. Mater Sci Eng A 483–484:309–312. doi:http://dx.doi.org/10.1016/j.msea.2006.09.156

  • Nehrke G, Poigner H, Wilhelms-Dick D, Brey T, Abele D (2012) Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem Geophys Geosyst 13(5):Q05014. doi:10.1029/2011GC003996

  • Perrin C, Smith DC (2007) Earliest steps of diagenesis in living Scleractinian corals: evidence from ultrastructural pattern and Raman spectroscopy. J Sediment Res 77:495–507. doi:http://dx.doi.org/10.2110/jsr.2007.051

  • Powell MG, Kowalewski M (2002) Increase in evenness and sampled alpha diversity through the Phanerozoic: Comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331. doi:http://dx.doi.org/10.1130/0091-7613(2002)030<0331:IIEASA>2.0.CO;2

  • Rhoads DC, Lutz RA (1980) Skeletal growth of aquatic organisms. Biological records of environmental change. Plenum Press, New York

    Google Scholar 

  • Rogalla NS, Amler MRW (2007) Statistic approach on taphonomic phenomena in shells of Glycymeris glycymeris (Bivalvia: Glycymeridae) and its significance in the fossil record. Paläontol Z 81:334–355

    Article  Google Scholar 

  • Tomašových A, Farkaš J (2005) Cathodoluminiscence of Late Triassic terebratulid brachiopods: implications for growth patterns. Palaeogeogr Palaeoclimatol 216:215–233 doi:http://dx.doi.org/10.1016/j.palaeo.2004.11.010

  • Webb GE, Price GJ, Nothdurft LD, Deer L, Rintoul L (2007) Cryptic meteoric diagenesis in freshwater bivalves: Implications for radiocarbon dating. Geology 35:803–806 doi:http://dx.doi.org/10.1130/G23823A.1

  • Yang W, Kashani N, Li X-W, Zhang G-P, Meyers MA (2011) Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mat Sci Eng C 31:724–729. doi:http://dx.doi.org/10.1016/j.msec.2010.10.003

  • Zuschin M, Stanton RJ Jr (2001) Experimental measurement of shell strength and its taphonomic interpretation. Palaios 16:161–170. doi:http://dx.doi.org/10.1669/0883-1351(2001)016<0161:EMOSSA>2.0.CO;2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Gordillo .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Gordillo, S., Bayer, M.S., Boretto, G., Charó, M. (2014). Shell Microstructure and Shell Architecture. In: Mollusk shells as bio-geo-archives. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-03476-8_3

Download citation

Publish with us

Policies and ethics