Skip to main content

Flame Retardant of Cellulosic Materials and Their Composites

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Three main topics are described in this chapter, namely (i) physical and chemical structural of cellulosic materials, (ii) fire and flame retardancy finishing of cellulosic materials, and (iii) fire and flame retardancy finishing of cellulosic materials and its composite. The first subject describes in detail different cellulose sources and their chemical and physical structures. Furthermore, the types, structure, and chemical composition of different fibers (cotton, linen, jute, bamboo, hemp, and wood) and their blend have been described in detail. The second subject contains the uses of flame retardant fabrics, and describes the deference in the definition of retardant/resistant terms; in addition, the theory of combustion or burning process, and the mechanism of fire and flame retardant action are explained in detail. Also, different phosphorous flame retardant synergism, types of flame resistant finishes, and their classification based on durability and nature have been mentioned. By the end of this chapter, different Flammability Tests for Textile are described in detail. The last section of the chapter shows the finishing of cellulosic materials and their composites in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci 55(4), 241–249 (2009)

    Google Scholar 

  2. Agoudjil, N., et al.: Design and properties of biopolymer–silica hybrid materials: the example of pectin-based biodegradable hydrogels. Pure Appl. Chem. 84(12), 2521 (2012)

    Google Scholar 

  3. Alongi, J., et al.: Hybrid phosphorus-doped silica architectures derived from a multistep sol-gel process for improving thermal stability and flame retardancy of cotton fabrics. Polym. Degrad. Stab. 97(8), 1334–1344 (2012)

    Google Scholar 

  4. Alongi, J., et al.: Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. J. Therm. Anal. Calorim. 110(3), 1207–1216 (2012)

    Google Scholar 

  5. Lindman, B., Karlström, G., Stigsson, L.: On the mechanism of dissolution of cellulose. J. Mol. Liq. 156(1), 76–81 (2010)

    Google Scholar 

  6. Medronho, B., Lindman, B.: Competing forces during cellulose dissolution: from solvents to mechanisms. Curr. Opin. Colloid Interface Sci. 19(1), 32–40 (2014)

    Google Scholar 

  7. Möller, M., Popescu, C.: Chapter 9.6: Natural fibres, in sustainable solutions for modern economies. In: Höfer, R. (ed.) The Royal Society of Chemistry, pp. 364–389. Academic Press, UK (2009)

    Google Scholar 

  8. Klemm, D., Schmauder, H.-P., Heinze, T.: Cellulose In: Baets, S.D., Vandamme, E.J., Steinbüchel, A. (eds.) Biopolymers: Biology, Chemistry, Biotechnology, Applications, Polysaccharide II pp. 275–319. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  9. Wakelyn, P.J. et al.: Cotton fibers. In: Lewin, M., Pearce E.M. (eds.) Handbook of Fiber Chemistry, pp. 577–724. Marcel Dekker, Inc., New York (1998)

    Google Scholar 

  10. DeLanghe, E.A.L.: Cotton physiology. In: Mauney, J.R., Stewart, J.M. (eds.) The Cotton Foundation, pp. 325–349. Lint Development, Memphis (1986)

    Google Scholar 

  11. TutorVista: Polysaccharides Cellulose (2011). http://www.tutorvista.com/biology/polysaccharides-cellulose

  12. Moran-Mirabal, J.M.: Advanced-microscopy techniques for the characterization of cellulose structure and cellulose-cellulase interactions. In: Ven, T.V.D., Godbout, L. (eds.) Cellulose—Fundamental Aspects (2013)

    Google Scholar 

  13. Berendjchi, A., Khajavi, R., Yazdanshenas, M.: Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res. Lett. 6(1), 594 (2011)

    Google Scholar 

  14. Cheng, T., et al.: Fast response photochromic textiles from hybrid silica surface coating. Fibers Polym. 9(3), 301–306 (2008)

    Google Scholar 

  15. de Menezes, E.W., et al.: Ionic silica based hybrid material containing the pyridinium group used as an adsorbent for textile dye. J. Colloid Interface Sci. 378(1), 10–20 (2012)

    Google Scholar 

  16. Li, Y., Lo, L.Y., Hu, J.Y.: USA Patent (2007)

    Google Scholar 

  17. Liu, X., et al.: Photochromic textiles from hybrid silica coating with improved photostability. Res. J. Text. Appar 14(2), 1–8 (2010)

    Google Scholar 

  18. Toskas, G., et al.: Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr. Polym. 94(2), 713–722 (2013)

    Google Scholar 

  19. Hassabo, A.G.: Synthesis and Deposition of Functional Nano-Materials on Natural Fibres 2011, RWTH Aachen University, Aachen, p. 154 (2011)

    Google Scholar 

  20. Krässig, H.A.: Cellulose—structure, accessibility and reactivity. In: Huglin, M.B. (eds.) Polymer Monographs, pp. 1–375. Gordon and Breach Science Publishers, Yverdon, Switzerland (1993)

    Google Scholar 

  21. Kozlowski, R., Wladyka-Przybylak, M.: Uses of natural fibre reinforced plastics. In: Wallenberger, F.T., Weston, N.E. (eds.) Natural Fibres, Plastics and Composites, pp. 249–274. Kluwer Academic, Dordrecht, Boston (2004)

    Google Scholar 

  22. Kandola, B.K., et al.: Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J. Macromol. Sci. C 36(4), 721–794 (1996)

    Google Scholar 

  23. Horrocks, A.R.: An introduction to the burning behaviour of cellulosic fibres. J. Soc. Dyers Colour. 99(7–8), 191–197 (1983)

    Google Scholar 

  24. Russell, L.J., et al.: Combining fire retardant and preservative systems for timber products in exposed applications—state of the art review. Australian Forest and Wood Products R & D Corporation, Victoria (2007)

    Google Scholar 

  25. Shafizadeh, F.: The chemistry of pyrolysis and combustion. In: Rowell, R. (ed.) The Chemistry of Solid Wood, pp. 489–529. American Chemical Society, Washington (1984)

    Google Scholar 

  26. LeVan, S.L., Winandy, J.E.: Effects of fire retardant treatments on wood strength: a review. Wood Fiber Sci. 22(1), 113–131 (1990)

    Google Scholar 

  27. Cottoninc: Cotton Nonwoven Technical Guide, 2011. http://www.cottoninc.com/Cotton-Nonwoven-Technical-Guide/

  28. Mukherjee, P.S., Satyanarayana, K.G.: An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. J. Mater. Sci. 21(12), 4162–4168 (1986)

    Google Scholar 

  29. Ferdous, D., et al.: Pyrolysis of lignins: experimental and kinetics studies. Energ. Fuels 16(6), 1405–1412 (2002)

    Google Scholar 

  30. Manfredi, L.B., et al.: Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym. Degrad. Stab. 91(2), 255–261 (2006)

    Google Scholar 

  31. Chapple, S. Anandjiwala, R.: Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J. Thermoplast. Compos. Mater. 23, 871–893 (2010)

    Google Scholar 

  32. Lewin, M., Basch, A.: Structure, pyrolysis and flammability of cellulose. In: Lewin, M., Atlas, S.M., Pearce, E.M. (eds.) Flame-retardant Polymeric Materials, pp. 1–41. Plenum Press, New York (1978)

    Google Scholar 

  33. Lewin, M.: Unsolved problems and unanswered questions in flame retardance of polymers. Polym. Degrad. Stab. 88(1), 13–19 (2005)

    Google Scholar 

  34. Basch, A., Lewin, M.: The influence of fine structure on the pyrolysis of cellulose. I. Vacuum pyrolysis. J. Polym. Sci. Polym. Chem. Ed. 11(12), 3071–3093 (1973)

    Google Scholar 

  35. Festucci-Buselli, R.A., Otoni, W.C., Joshi, C.P.: Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz. J. Plant Physiol. 19(1), 1–13 (2007)

    Google Scholar 

  36. Shaw, L.H.: Cotton’s importance in the textile industry: the role of the ICAC. In: At a Symposium Lima, Peru. pp. 1–8 (1998)

    Google Scholar 

  37. van Zyl, W.H., et al.: Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. Interface Focus 1, 196–211 (2011)

    Google Scholar 

  38. Kampalanonwat, P., Supaphol, P.: Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. Acs Appl. Mater. Interfaces 2(12), 3619–3627 (2010)

    Google Scholar 

  39. Karine, C., et al.: Morphology and mechanical behavior of a natural composite: the flax fiber. In: 16th International Conference on Composite Materials. Kyoto, Japan (2007)

    Google Scholar 

  40. Bos, H.L., Donald, A.M.: In situ ESEM study of the deformation of elementary flax fibres. J. Mater. Sci. 34(13), 3029–3034 (1999)

    Google Scholar 

  41. Wang, H.H., et al.: An improved fibril angle measurement method for wood fibres. Wood Sci. Technol. 34(6), 493–503 (2001)

    Google Scholar 

  42. Charlet, K., et al.: Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos. Appl. Sci. Manuf. 38(8), 1912–1921 (2007)

    Google Scholar 

  43. Ghosh, P., Samanta, A.K., Basu, G.: Effect of selective chemical treatments of jute fibre on textile-related properties and processibility. Indian J. Fibre Text. Res. 29(1), 85–99 (2004)

    Google Scholar 

  44. Wang, W.-M., Cai, Z.-S., Yu, J.-Y.: Study on the chemical modification process of jute fiber. J. Eng. Fibers Fabr. 3(2), 1–11 (2008)

    Google Scholar 

  45. Hattopadhyay, D.P.: Introduction, chemistry and preparatory processes of jute. Colourage 45(5), 23 (1998)

    Google Scholar 

  46. Pan, N.C., Day, A., Mahalanabis, K.K.: Chemical composition of jute and its estimation. Man Made Text. India 42, 467–473 (1999)

    Google Scholar 

  47. Lakkad, S.C., Patel, J.M.: Mechanical properties of bamboo, a natural composite. Fibre Sci. Technol. 14(4), 319–322 (1981)

    Google Scholar 

  48. Chen, Y.D., Qin, W.L.: The chemical composition of ten bamboo species. In: Rao, A.N., et al. (ed.) Recent Research on Bamboo. Proceedings of the International Bamboo Workshop, Hangzhou, China (1985)

    Google Scholar 

  49. Chaowana, P.: Bamboo: an alternative raw material for wood and wood-based composites. J. Mater. Sci. Res. 2(2), 90–102 (2013)

    Google Scholar 

  50. Cronier, D., Monties, B., Chabbert, B.: Structure and chemical composition of bast fibers isolated from developing hemp stem. J. Agric. Food Chem. 53(21), 8279–8289 (2005)

    Google Scholar 

  51. Wardrop, A.B.: Morphological factors involved in the pulping and beating of wood fibers. Sven. Papperstid 66, 231–247 (1963)

    Google Scholar 

  52. Sjostrom, E.: Wood Chemistry. Fundamentals and Applications, 2nd edn. Academic press, San Diego (1993)

    Google Scholar 

  53. Grayson, M.: Encyclopedia of Textiles Fibers and Nonwoven Fabrics, pp. 99–114, 188–211. Wiley Interscience, New York (1997)

    Google Scholar 

  54. Lewin, M., Atlas, S.A., Pearce, E.M.: Flame-Retardant Polymeric Materials, vol. 1, Plenum Press, New York (1978)

    Google Scholar 

  55. Mohamed, A.L.: Acrylamide Derivatives as Additives to Multifinishing Formulations of Cotton Fabrics, p. 378. Cairo, Egypt, Helwan University (2005)

    Google Scholar 

  56. Moon, S., Jo, B., Farris, R.J.: Flame resistance and foaming properties of NBR compounds with halogen-free flame retardants. Polym. Compos. 30(12), 1732–1742 (2009)

    Google Scholar 

  57. Zhang, S., Horrocks, A.R.: A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 28(11), 1517–1538 (2003)

    Google Scholar 

  58. Nikolaeva, M., Kärki, T.: A review of fire retardant processes and chemistry, with discussion of the case of wood-plastic composites. Baltic For. 17(2), 314–326 (2011)

    Google Scholar 

  59. Norber, T., Blkales, M., Segal, L.: Cellulose and Cellulose Derivatives, vol. 5. Wiley Interscience, New York, (1976)

    Google Scholar 

  60. Lewin, M., Atlas, S.A., Pearce, E.M.: Flame-Retardant Polymeric Materials, vol. 2. Plenum Press, New York (1978)

    Google Scholar 

  61. Carraher, C.E.: Polymer Chemistry, 4th Edn. Marcel Dekker, New York (1996)

    Google Scholar 

  62. Tomasino, C.: Chemistry and Technology of Fabric Preparation and Finishing, p. 268. North Carolina State University, Raleigh, North Carolina (1992)

    Google Scholar 

  63. Hebeish, A., et al.: Modification of partially carboxymethylated cotton via crafting with acrylic acid and styrene using gamma radiation. J. Appl. Polym. Sci. 32(8), 6237–6257 (1986)

    Google Scholar 

  64. Kroschwitz, J.I.: Polymers: fibers and textile: a compendium. In: Encyclopedia Reprint Series, pp. 119–141, 433–482. Wiley, New York (1990)

    Google Scholar 

  65. Wolf, R., Kaul, B.L.: Plastics, additives. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2000)

    Google Scholar 

  66. Sutker, B.J.: Flame retardants. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2000)

    Google Scholar 

  67. Hirschler, M.M.: Chemical aspects of thermal decomposition of polymeric materials, In:Grand, A.F., Wilkie, C. (eds.) Fire Retardancy of Polymeric Materials, pp. 27–79. Marcel Dekker, New York, (2000)

    Google Scholar 

  68. Benbow, J.: Minerals in fire protection. Ind. Miner. 240, 61–73 (1987)

    Google Scholar 

  69. Green, J.: Mechanisms for flame retardancy and smoke suppression—a review. J. Fire Sci. 14(6), 426–442 (1996)

    Google Scholar 

  70. Schmidt, W.G.: Flame retardant additives in plastics and recent patents. Plast. Inst. (London), Trans. J. 33(108), 247–255

    Google Scholar 

  71. Pearce, E.M.: Flame retardants for polymer systems. Pure Appl. Chem. 58(6), 925–930 (1986)

    Google Scholar 

  72. Focke, W.W., Strydom, C.A., Bartie, N.: Thermal analysis of commercial inorganic flame retardants. S. Afr. Inst. Chem. Eng. 41–51 (1997)

    Google Scholar 

  73. Green, J.: 25 years of flame retarding plastics. J. Fire Sci. 15(1), 52–67 (1997)

    Google Scholar 

  74. Pettigrew, A.: Flame retardants, halogenated. In: Kirk-Othmer Encyclopedia of Chemical Technology, pp. 954–976. Wiley, New York (2000)

    Google Scholar 

  75. Gann, R.G.: Flame retardants, overview. In: Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, New York (2000)

    Google Scholar 

  76. Gilman, J.W., et al.: Characterisation of flame retarded polymer combustion char by solid state 13C and 29Si NMR and EPR. Polym. Prepr. 38(1), 802–803 (1997)

    Google Scholar 

  77. Oulton, D.P.: Fire-retardant textiles. In: Carr, C.M. (ed.) Chemistry of the Textiles Industry, pp. 102–124. Springer, Netherlands (1995)

    Google Scholar 

  78. Rusznák, I., Tánczos, I.: Influence of short-term thermal pretreatment on the rate of acidolysis of cellulose. J. Polym. Sci. Polym. Symp. 42(3), 1475–1480 (1973)

    Google Scholar 

  79. Chatterjee, P.K.: Characterization of fibers by dynamic thermoacoustical analysis. J. Macromol. Sci. A Chem. 8(1), 191–209 (1974)

    Google Scholar 

  80. Horrocks, A.R., Anand, S.C., Sanderson, D.: Complex char formation in flame retarded fibre-intumescent combinations: 1. Scanning electron microscopic studies. Polymer 37(15), 3197–3206 (1996)

    Google Scholar 

  81. Zhu, P., et al.: A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J. Anal. Appl. Pyrol. 71(2), 645–655 (2004)

    Google Scholar 

  82. Price, D., et al.: Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J. Anal. Appl. Pyrol. 40–41, 511–524 (1997)

    Google Scholar 

  83. Lecoeur, E., et al.: Flame retardant formulations for cotton. Polym. Degrad. Stab. 74(3), 487–492 (2001)

    Google Scholar 

  84. Kandola, B.K., Horrocks, S., Horrocks, A.R.: Evidence of interaction in flame-retardant fibre-intumescent combinations by thermal analytical techniques. Thermochim. Acta 294(1), 113–125 (1997)

    Google Scholar 

  85. Radlein, D., Piskorz, J., Scott, D.S.: Fast pyrolysis of natural polysaccharides as a potential industrial process. J. Anal. Appl. Pyrol. 19, 41–63 (1991)

    Google Scholar 

  86. Madorsky, S.L., Hart, V.E., Straus, S.: Thermal degradation of cellulosic materials. J. Res. Nat. Bur. Stan. 60(4), 343 (1958)

    Google Scholar 

  87. Schuyten, H.A., Weaver, J.W., Reid, J.D.: Advances in Chemistry, vol. 9. Academic Press, New York (1954)

    Google Scholar 

  88. Rodrig, H., Basch, A., Lewin, M.: Crosslinking and pyrolytic behavior of natural and man-made cellulosic fibers. J. Polym. Sci. Polym. Chem. Ed. 13(8), 1921–1932 (1975)

    Google Scholar 

  89. Horrocks, A.R., Price, D.: Fire Retardant Materials (2001) Abington Hall, Abington, Cambridge CB1 6AH, England: Woodhead Publishing Limited

    Google Scholar 

  90. Troitzsch, J.H., Overview of Flame Retardants. Chimica Oggi/chemistry Today 16(January/February) (1998)

    Google Scholar 

  91. Parks, W.G., et al.: Mechanism of pyrolytic decomposition of cellulose. In: 127th Meetting of American Chemical Society (1955)

    Google Scholar 

  92. Jolles, Z.E.: Bromine and its compounds. Ernest Benn Ltd., London (1966)

    Google Scholar 

  93. Barker, R.H., Drews, M.J.: Development of Flame Retardants for Polyester/Cotton Blend. NBS—GRC—ETIP, pp. 59–77 (1976)

    Google Scholar 

  94. Kuryla, W.C., Papa, A.J.: Flame Retardant Science and Technology of Polymeric Materials. Marcel Dekker, New York (1979)

    Google Scholar 

  95. Nevell, T.P., Zeronian, S.H.: Cellulose chemistry and its applications. Ellis Horwood, John Wiley & Sons, Ltd, Chichester (1985)

    Google Scholar 

  96. Weil, E.D.: Synergists, adjuvants, and antagonists in flame-retardant systems. In: Wilkie, C.A., Grand, A.F. (eds.) Fire Retardancy of Polymeric Materials. New York, Marcel Dekker Inc. (2000)

    Google Scholar 

  97. Cornell, J.A.: Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, 3rd Edn. Wiley, New York (2002)

    Google Scholar 

  98. Khanna, Y.P., Pearce, E.: Synergism and flame retardancy. Lewin, M., Atlas, S.M., Pearce E.M. (eds.) In: Flame—Retardant Polymeric Materials, pp. 43–61. Springer, New York (1978)

    Google Scholar 

  99. Horacek, H., Grabner, R.: Advantages of flame retardants based on nitrogen compounds. Polym. Degrad. Stab. 54(2–3), 205–215 (1996)

    Google Scholar 

  100. Waly, A.I., et al.: Special finishing of cotton to impart flame-retardancy, easy care finishing and antimicrobial properties. Res. J. Text. Apparel 13(3), 10–26 (2009)

    Google Scholar 

  101. Barker, R.H., Hendrix, J.E.: Flame Retardancy of Polymeric Materials. In: Kuryla, W.C., Papa, A.V. (eds.) pp. 39–78. Marcel Dekker, New York (1979)

    Google Scholar 

  102. Little, R.W.: Flame Proofing Textile Fabrics. Reinhold Publishing Corporation, New York (1947)

    Google Scholar 

  103. Reeves, W.A., et al.: Some chemical and physical factors influencing flame retardancy. Text. Res. J. 40(3), 223–231 (1970)

    Google Scholar 

  104. Weil, E.D.: Flame Retardancy of Polymeric Materials. In: Kuryla, W.C., Papa, A.V. (eds.) pp. 185–241. Marcel Dekker, New York (1979)

    Google Scholar 

  105. Davies, D., Horrocks, A.R.: Nitrogen–phosphorous antagonism in flame-retardant cotton. J. Appl. Polym. Sci. 31(6), 1655–1662 (1986)

    Google Scholar 

  106. Carty, P., Byrne, M.S.: The Chemical and Mechanical Finishing of Textile Materials, 2nd Edn. UNN Commercial Enterprises, Ltd (1987)

    Google Scholar 

  107. Troitzsch, J.H.: International Plastics Flammability Handbook: Principles Regulations, Testing and Approval, 2nd edn. Hanser publishers, Munch Germany (1990)

    Google Scholar 

  108. Green, J.: A review of phosphorus-containing flame retardants. J. Fire Sci. 10(6), 470–487 (1992)

    Google Scholar 

  109. Touval, T.: Antimony and other inorganic flame retardants. In: Krik-Othmer (ed.) Encyclopaedia of Chemical Technology. pp. 936–954, Wiley, New York (1993)

    Google Scholar 

  110. Weil, E.D.: Phosphorus Flame Retardants. In: Kirk-Othmer Encyclopedia of Chemical Technology, p. 559–570. Wiley, New York (2000)

    Google Scholar 

  111. Hebeish, A., Guthrie, J.T.: The Chemistry and Technology of Cellulose Copolymers. Springer, Berlin (1981)

    Google Scholar 

  112. Reeves, W.A., Marquette, Y.B.: Lightweight, durable-press cotton and polyester/cotton with ignition resistance. Text. Res. J. 49(3), 163–169 (1979)

    Google Scholar 

  113. Nair, G.P.: Flammability in Textiles and Routs to Flame Retardant Textiles- V Colourge 47(12), 31–34 (2000)

    Google Scholar 

  114. Nair, G.P.: Flammability in Textiles and Routs to Flame Retardant Textiles - XIII Colourge 48(9), 39–43 (2001)

    Google Scholar 

  115. Nair, G.P.: Flammability in Textiles and Routs to Flame Retardant Textiles - XII Colourge 48(8), 43–47 (2001)

    Google Scholar 

  116. Bullock, J.B., Welch, C.M., Guthrie, J.D.: The weathering characteristics of lightweight flame-retardant finishes for cotton fabrics. Text. Res. J. 34(8), 691–700 (1964)

    Google Scholar 

  117. Bullock, J.B., Welch, C.M.: Weathering durability of cotton fabrics treated with APO-THPC flame retardant. Text. Res. J. 36(5), 441–451 (1966)

    Google Scholar 

  118. Nair, G.P.: Flammability in Textiles and Routs to Flame Retardant Textiles - X Colourge 48(6), 37–41 (2001)

    Google Scholar 

  119. Holme, I.: Int. Dyer 184(6), 17 (1999)

    Google Scholar 

  120. Barber, A.J.: Int. Dyer 186(2), 29 (2001)

    Google Scholar 

  121. Nair, G.P.: Flammability in Textiles and Routs to Flame Retardant Textiles - XVII Colourage 49(3), 49–52 (2002)

    Google Scholar 

  122. Nair, G.P.: Flammability in Textiles and Routs to Flame Retardant Textiles - XVIII Colourage 49(4), 29–34 (2002)

    Google Scholar 

  123. Stowell, J.K., Yang, C.Q.: A durable low-formaldehyde flame retardant finish for cotton fabrics. AATCC Rev. 3(2), 17–20 (2003)

    Google Scholar 

  124. Waly, A.I., et al.: Processes of dyeing, finishing and flame retardancy of cellulosic textiles in the presence of reactive tertiary amines. Res. J. Text. Apparel 16(3), 66–84 (2012)

    Google Scholar 

  125. Rothon, R.N.: Particulate-filled polymer composites. The University of Michigan: Longman Scientific and Technical,—Science (1995)

    Google Scholar 

  126. Ekebafe, L.O.: Improving the flammability of polymeric materials: a review. J. Chem. Soc. Niger. 34(1), 128–137 (2009)

    Google Scholar 

  127. Day, J.E.: Preparation and catalytic oxidation of pure amorphous carbon. Ind. Eng. Chem. 28(2), 234–238 (1936)

    Google Scholar 

  128. Delfosse, L., et al.: Combustion of ethylene-vinyl acetate copolymer filled with aluminium and magnesium hydroxides. Polym. Degrad. Stab. 23(4), 337–347 (1989)

    Google Scholar 

  129. Baillet, C., Delfosse, L.: The combustion of polyolefins filled with metallic hydroxides and antimony trioxide. Polym. Degrad. Stab. 30(1), 89–99 (1990)

    Google Scholar 

  130. Eboatu, A.N., Rades, J., Shehu, D.: Flame retardant treatment of some roofing thatch. Niger. J. Renew. Energ. 3(1–2), 91–94 (1992)

    Google Scholar 

  131. Iji, M., Serizawa, S.: Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym. Adv. Technol. 9(10–11), 593–600 (1998)

    Google Scholar 

  132. Kambour, R.P., Klopfer, H.J., Smith, S.A.: Limiting oxygen indices of silicone block polymer. J. Appl. Polym. Sci. 26(3), 847–859 (1981)

    Google Scholar 

  133. Zaikov, G.E., Lomakin, S.M.: New aspects of ecologically friendly polymer flame retardant systems. Polym. Degrad. Stab. 54(2–3), 223–233 (1996)

    Google Scholar 

  134. Allen, N.S., et al.: Entrapment of stabilisers in silica: I. Controlled release of additives during polypropylene degradation. Polym. Degrad. Stab. 56(2), 125–139 (1997)

    Google Scholar 

  135. Chao, T.C.: et al.: In: 43rd International SAMPE Symposium. Anaheim (1998)

    Google Scholar 

  136. National Technical Information Service (NTIS) (2004) Fire-Safe Polymers and Polymer Composites. September 2004, Final Report, Office of Aviation Research, Springfield, Virginia, Washington

    Google Scholar 

  137. Mohamed, A.L., El-Sheikh, M.A., Waly, A.I.: Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites. Carbohydr. Polym. 102, 727–737 (2014)

    Google Scholar 

  138. Low, J.E., Levalois-Grützmacher, J.: Investigation of synergistic effects of phosphorus, nitrogen and silicon in the flame retardancy of cellulose-based cotton textiles processed by plasma-induced graft polymerization. In: ISPC 21–21st International Symposium on Plasma Chemistry. Cairns Convention Centre, Australia (2013)

    Google Scholar 

  139. Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996)

    Google Scholar 

  140. Gilman, J.W., et al.: Flammability properties of polymer—layered-silicate nanocomposites. polypropylene and polystyrene nanocomposites. Chem. Mater. 12(7), 1866–1873 (2000)

    Google Scholar 

  141. Levchik, S.V., et al.: Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants. Polym. Degrad. Stab. 54(2–3), 217–222 (1996)

    Google Scholar 

  142. Wilkie, C.A.: Poly(sodium styrenesulfonate): a self intumescent material. In: 10th Conference Recent Advances in Flame Retardancy of Polymeric Materials. Stamford, Connecticut, USA (1999)

    Google Scholar 

  143. Ebdon, J.R., et al.: The effects of some transition-metal compounds on the flame retardance of poly(styrene-co-4-vinyl pyridine) and poly(methyl methacrylate-co-4-vinyl pyridine). Polym. Degrad. Stab. 60(2–3), 401–407 (1998)

    Google Scholar 

  144. Rothon, R.N., Hornsby, P.R.: Flame retardant effects of magnesium hydroxide. Polym. Degrad. Stab. 54(2–3), 383–385 (1996)

    Google Scholar 

  145. Brown, N.: New Aluminium hydroxides for printed circuit boards and public transport application. In: 10th Conference Recent Advances in Flame Retardancy of Polymeric Materials. Stamford, Connecticut, USA (1999)

    Google Scholar 

  146. Reyes, J.D., et al.: Flame Retardants for Enhanced Propeties in Polyolefins. In: 10th Conference Recent Advances in Flame Retardancy of Polymeric Materials. Stamford, Connecticut, USA (1999)

    Google Scholar 

  147. Shen, K.K., Ferm, J.: Maximizing fire test performances of polyolefins with zinc borate. In 10th Conference Recent Advances in Flame Retardancy of Polymeric Materials. Stamford, Connecticut, USA (1999)

    Google Scholar 

  148. Kuma, K., et al.: Flame retardant and flame retardant resin composition formulated with the same. In: US Patent. USA (1999)

    Google Scholar 

  149. Siegel, H., Eggersdorfer, M.: Ketones. In: Gerhartz, W. (eds.) Ullmann’s Encyclopedia of Industrial Chemistry, pp. 77–95. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (2000)

    Google Scholar 

  150. Birnbaum, L.S., Staskal, D.F.: Brominated flame retardants: cause for concern? Environ. Health Perspect. 112(1), 9–17 (2004)

    Google Scholar 

  151. Lomakin, S.M., Zaikev, G.E.: Polymer Flame Retardancy. VSP Publishers, Netherlands (2003)

    Google Scholar 

  152. Fried, J.R.: Polymer Science and Technology, 2nd edn. Prentice-Hall, New Delhi (2003)

    Google Scholar 

  153. Bouton, T.C.: N-Containing flame retardants: an alternative handout at OECD workshop. In: Brominated Flame Retardants, Flame Retardant, pp. 22–25. Neuchatel Switzerland (1997)

    Google Scholar 

  154. Grabner, R.S.: N-Containing flame retardants: an alternative handout at OECD workshop. In: Brominated Flame Retardants, Flame Retardants, pp. 22–25. Neuchatel Switzerland (1993)

    Google Scholar 

  155. ASTM Standard Test Method C33 (ASTM E84-13A).: Standard Test Method for Surface Burning Characteristics of Building Materials, in Institution. ASTM International, West Conshohocken, PA (2001)

    Google Scholar 

  156. ASTM Standard Test Method C33 (ASTM E–662).: Standard Test Methods for Optical Density of Smoke Generated by Solid Materials, in Institution. ASTM International, West Conshohocken, PA (2011)

    Google Scholar 

  157. Nelson, G.L.: Materials and tests for hazard prevention. In: Nelson G.L. (ed.) Fire and Polymers II, American Chemical Society, pp. 1–26. Washington, D.C (1995)

    Google Scholar 

  158. ASTM Standard Test Method C33 (ASTM D–2863–00).: Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), In Institution. ASTM International, West Conshohocken, PA (2011)

    Google Scholar 

  159. AATCC Test Method (1934–1969).: Vertical burning test method in fire resistance of textile fabrics. Technical Manual Method of the American Association of Textile Chemists and Colorists, USA. p. 201–202 (1972)

    Google Scholar 

  160. 5906–CCC–T–191b.: Horizontal Spread of Flame Test Method. U.S. Dept. of Commerce, Federal Specification, USA (1951)

    Google Scholar 

  161. AATCC Test Method (1932–1962): Flammability of Clothing Textiles, pp. 203–206. Technical Manual Method of the American Association of Textile Chemists and Colorists, USA (1972)

    Google Scholar 

  162. Pads, S.F.F.O.M.A.M.: Test manual for flammability of mattresses and mattress pads resistance of a mattress or mattress pad when exposed to a lighted cigarette. Consum. Prod. Saf. Comm. Eng. Sci. (1991)

    Google Scholar 

  163. Federal Specification DDD-C-95.: Pill test, carpets and rugs, wool, nylon, acrylic, modacrylic (1972)

    Google Scholar 

  164. Standard Test Method: Smoke Test. National Bureau of Standards, NBS (1973)

    Google Scholar 

  165. ASTM Standard Test Method C33 (ASTM E119-00a): Standard test methods for fire tests of building construction and material. In: Institution. ASTM International, West Conshohocken, PA (2001)

    Google Scholar 

  166. Bishop, D.M., Bottomley, D., Zobel, F.G.R.: Fire-retardant paints. J. Oil Colour Chem. Assoc. 66(12), 373–396 (1983)

    Google Scholar 

  167. Tesoro, G.C.: Chemical modification of polymers with flame-retardant compounds. J. Polym. Sci. Macromol. Rev. 13(1), 283–353 (1978)

    Google Scholar 

  168. Waly, A., et al.: Especial finishing of cotton to impart flame-retardancy and easy care finishing. In: 3rd International Conference of Textile Research Division, NRC; Textile Processing: State of the Art and Future Developments, pp. 515–528. Cairo, Egypt (2006)

    Google Scholar 

  169. Waly, A., et al.: Process of single—bath dyeing, finishing and flam—retarding of cellulosic textiles in presence of reactive tertiary amines. In: 3rd International Conference of Textile Research Division, NRC; Textile Processing: State of the Art and Future Developments, pp. 529–543. Cairo, Egypt (2006)

    Google Scholar 

  170. Gaan, S., Sun, G.: Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym. Degrad. Stab. 92(6), 968–974 (2007)

    Google Scholar 

  171. Gaan, S., Sun, G.: Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J. Anal. Appl. Pyrol. 78(2), 371–377 (2007)

    Google Scholar 

  172. Waly, A., et al.: Flame retarding, easy care finishing and dyeing of cellulosic textiles in one bath. Egypt. J Text. Polym. Sci Technol. 12(2), 101–131 (2008)

    Google Scholar 

  173. Chruściel, J.J., Leśniak, E.: Modification of thermoplastics with reactive silanes and siloxanes in thermoplastic elastomers. In: El-Sonbati, P.A. (ed.) Tech: Europe University Campus STeP Ri, Slavka Krautzeka 83/A: Rijeka, Croatia (2012)

    Google Scholar 

  174. Mark, H.F., Atlas, S.M., Cernia, E.: Man-Made Fibers Science and Technology, vol. 2, 3. Wiley, New York (1986)

    Google Scholar 

  175. Heidari, S., Kallonen, R.: Hybrid fibres in fire protection. Fire Mater. 17(1), 21–24 (1993)

    Google Scholar 

  176. Tesoro, G.C., Meiser, C.H.: Some effects of chemical composition on the flammability behavior of textiles. Text. Res. J. 40(5), 430–436 (1970)

    Google Scholar 

  177. Puglia, D., Biagiotti, J., Kenny, J.M.: A review on natural fibre-based composites—Part II. J. Nat. Fibers 1(3), 23–65 (2005)

    Google Scholar 

  178. Blicblau, A.S., Coutts, R.S.P., Sims, A.: Novel composites utilizing raw wool and polyester resin. J. Mater. Sci. Lett. 16(17), 1417–1419 (1997)

    Google Scholar 

  179. Kandola, B.K., Kandare, E.: Composites having improved fire resistance. In: Horrocks, A.R., Price, D. (eds.) Advances in Fire Retardant Materials, Woodhead Publishinge, Cambridge (2008)

    Google Scholar 

  180. Mark, H.F., et al.: Combustion of polymers and its retardation. In: Lewin, M., Atlas, S.M., Pearce, E.M. (eds.) Flame-retardant Polymeric Materials, pp. 1–17. Plenum Press, New York (1975)

    Google Scholar 

  181. Biagiotti, J., Puglia, D., Kenny, J.M.: A review on natural fibre-based composites-Part I. J. Nat. Fibers 1(2), 37–68 (2004)

    Google Scholar 

  182. Lowden, L., Hull, T.: Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2(1), 1–19 (2013)

    Google Scholar 

  183. Kim, H.-S., et al.: Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim. Acta 451(1–2), 181–188 (2006)

    Google Scholar 

  184. Yang, H., et al.: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose. Cellul. Lignin Energ. Fuels 20(1), 388–393 (2005)

    Google Scholar 

  185. Pabeliña, K.G., Lumban, C.O., Ramos, H.J.: Plasma impregnation of wood with fire retardants. Nucl. Instrum. Methods Phys. Res. Sect. B 272, 365–369 (2012)

    Google Scholar 

  186. Hakkarainen, T., et al.: Innovative Eco-Efficient High Fire Performance Wood Products For Demanding Applications. SP Tratek, Sweden; KTH Biotechnology: VTT, pp. 1–47. Finland, Sweden (2005)

    Google Scholar 

  187. Browne, F.L.: Theories of the Combustion of Wood and its Control—A Survey of the Literature. Forest Products Laboratory, Madison (1958)

    Google Scholar 

  188. Wang, G.-A., et al.: Characterizations of a new flame-retardant polymer. Polym. Degrad. Stab. 91(12), 3344–3353 (2006)

    Google Scholar 

  189. Borysiak, S., Paukszta, D., Helwig, M.: Flammability of wood–polypropylene composites. Polym. Degrad. Stab. 91(12), 3339–3343 (2006)

    Google Scholar 

  190. Kozłowski, R., Władyka-Przybylak, M.: Flammability and fire resistance of composites reinforced by natural fibers. Polym. Adv. Technol. 19(6), 446–453 (2008)

    Google Scholar 

  191. Bourbigot, S., Duquesne, S.: Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17(22), 2283–2300 (2007)

    Google Scholar 

  192. Sain, M., et al.: Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 83(2), 363–367 (2004)

    Google Scholar 

  193. Stark, N.M., et al.: Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polym. Degrad. Stab. 95(9), 1903–1910 (2010)

    Google Scholar 

  194. Mouritz, A.P., Gibson, A.G.: Fire Properties of Polymer Composite Materials. Solid Mechanics and Its Applications, vol. 143. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina L. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohamed, A.L., Hassabo, A.G. (2015). Flame Retardant of Cellulosic Materials and Their Composites. In: Visakh, P., Arao, Y. (eds) Flame Retardants. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03467-6_10

Download citation

Publish with us

Policies and ethics