Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The applications of the radiation processing involve the deep modifications in the irradiated materials starting with molecular scissions. The specific answers illustrate the progress of chemical changes onto the foreseen goals, which are related to the exposure parameters: dose, dose rate, environment. The type of bonds influences the radiation resistance by their energies and the reactivities of intermediates are the main criterion on which the selection of technological purpose is based. The initial structure of radiation processed material, the radiation stability of main component, the proposed formulation or the manufacture conditions are responsible for the amplitude of conversion or for the process yields. The essential aspects of radiochemical behavior of processed polymers are related to the followed mechanisms, which have particular features provided by material functionality. The main processes involving radiation effects: crosslinking and grafting as well as degradation are analyzed on different polymer structures, on various irradiation parameters, on the material availabilities to high modification levels under high energy radiation exposure. The radiation processing of polymers by their exposure to different types of irradiation sources is presented for the illustration of general possibilities offered by industrial applications. This review is relevant for the extension of applications which can be adapted to several conditions. The presented examples are start points for further studies in which raw materials can be changed as well as blend formulations. The open directions are available based on the provided information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapiro, A.: Radiation Chemistry of Polymer Materials. Wiley Interscience Publishers, New York (1962)

    Google Scholar 

  2. Clough, R.L.: Radiation-resistant polymers. In: Encyclopedia of Polymer Science and Engineering, pp. 667–708, 2nd edn. Wiley, New York (1988)

    Google Scholar 

  3. Bhattacharya, A.: Radiation and industrial polymers. Prog. Polym. Sci. 25, 371–401 (2000)

    Google Scholar 

  4. Clegg, D.W., Collyer, A.A. (eds.): Irradiation Effects on Polymers. Elsevier Applied Science, London (1999)

    Google Scholar 

  5. Woods, R.J.: Applied Radiation Chemistry: Radiation Processing. Wiley Interscience Publishers, New York (1994)

    Google Scholar 

  6. Clough, R.L.: High-energy radiation and polymers. A review of commercial processes and emerging applications. Nucl. Instrum. Meth. Phys. Res. B 185, 8–33 (2001)

    Google Scholar 

  7. Spinks, J.W.T., Woods, R.J. (eds.): Introduction to Radiation Chemistry, 3rd edn. Wiley, New York (1990)

    Google Scholar 

  8. Dawes, K., Glover, L.C., Vroom, D.A.: The effects of electron beam and γ-irradiation on polymer materials. In: Mark, J.E. (ed.) Physical Properties of Polymer, Handbook, 2nd edn. Springer, New York (2007)

    Google Scholar 

  9. Makuuchi, K., Chang, S. (eds.): Radiation Processing of Polymer Materials and Its Industrial Applications. Wiley, New York (2012)

    Google Scholar 

  10. Zaharescu, T., Jipa S.: Radiochemical modifications in polymers. In: Arndt, K.F., Lechner M.D. (eds.) Landolt-Börnstein Series, vol. VIII/6 C2, Polymer Solids and Polymer Melts, pp. 95–184. Springer (2013)

    Google Scholar 

  11. Drobny, J.G.: Ionizing Radiation and Polymers: Principles, Technology, and Applications. Elsevier, PDL Handbook Series (2012)

    Google Scholar 

  12. Cleland, M.R., Park, L.A., Chang, S.: Applications for radiation processes of material. Nucl. Instrum. Meth. Phys. Res. B 208, 66–73 (2003)

    Google Scholar 

  13. Zaharescu, T.: Irradiation effects on ethylene-propylene elastomers in aqueous environment. Polym. Test. 15, 69–74 (1996)

    Google Scholar 

  14. Gillen, K.T., Clough, R.L.: Polymer ageing insights available from modulus profiling data. Polym. Eng. Sci. 29, 29–35 (1989)

    Google Scholar 

  15. Ershov, B.G., Gordeev, A.V.: A model for radiolysis of water and aqueous solutions H2, H2O2, O2. Radiat. Phys. Chem. 77, 928–935 (2008)

    Google Scholar 

  16. Zaharescu, T., Giurginca, M., Setnescu, R.: The radiation stability of the ethylene-propylene type rubbers during their gamma ray ageing. Rev. Roum. Chim. 40, 181–190 (1995)

    Google Scholar 

  17. Zaharescu, T., Jipa, S., Setnescu, R., Setnescu, T.: Radiation processing of polyolefin blends. Part IV. Spectroscopic investigation on EPDM/PP blends. Nucl. Instrum. Meth. Phys. Res. B 265, 260–264 (2007)

    Google Scholar 

  18. Gehring, J.: With radiation crosslinking of polyolefin engineering plastics into the next millennium. Radiat. Phys. Chem. 57, 361–365 (2000)

    Google Scholar 

  19. Chmielewski, A.G., Haji-Saeid, M.: Radiation technologies: past, present and future. Radiat. Phys. Chem. 71, 16–20 (2004)

    Google Scholar 

  20. Chmielewski, A.G., Haji-Saeid, M.: IAEA Program in the field of radiation technology. Nucl. Instrum. Meth. Phys. Res. B 236, 38–43 (2005)

    Google Scholar 

  21. Haji-Saeid, M., Sampa, M.H., Ramamoorthy, N., Güven, O., Chmielewski, A.G.: The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers. Nucl. Instrum. Meth. Phys. Res. B 265, 51–57 (2007)

    Google Scholar 

  22. Haji-Saeid, M., de Sampa, M.H.O., Chmielewski A.G.: Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem. 76, 1353 (2007)

    Google Scholar 

  23. Haji-Saeid M., Safrany, A., de Sampa, M.H.O., Ramamoorthy, N.: Radiation processing of natural polymers: the IAEA contribution. Radiat. Phys. Chem. 79, 255–260 (2010)

    Google Scholar 

  24. Chmielewski, A.G., Al-Sheikhly, M., Berejka, A.J., Cleland, M.R., Antoniak, M.: Recent developments in the application of electron accelerators for polymer processing. Radiat. Phys. Chem. 94, 147–150 (2014)

    Google Scholar 

  25. Berejka, A.J., Cleland, M.R., Walo, M.: The evolution of challenges for industrial radiation processing—2012. Radiat. Phys. Chem. 94, 141–146 (2014)

    Google Scholar 

  26. Berejka, A.J.: Radiation response of industrial materials: dose rate and morphology implications. Nucl. Instrum. Meth. Phys. Res. B 261, 86–89 (2007)

    Google Scholar 

  27. Nablo, S.V., Chrusciel, J., Cleghorn, D.A., Rangwalla, I.: Factors influencing equipment selection in electron beam processing. Nucl. Instrum. Meth. Phys. Res. B 208, 90–101 (2003)

    Google Scholar 

  28. Miller, A.: Approval and control of radiation processing, EB and gamma. Radiat. Phys. Chem. 31, 385–393 (1988)

    Google Scholar 

  29. Cleland, M.R., Park, L.A.: Medium and high-energy electron beam radiation processing for commercial applications. Nucl. Instrum. Meth. Phys. Res. B 208, 74–89 (2003)

    Google Scholar 

  30. Barnard, J.W.: Factors influencing equipment selection in electron beam processing. Nucl. Instrum. Meth. Phys. Res. B 208, 98–101 (2003)

    Google Scholar 

  31. Charlesby, A. (ed.): Atomic Radiation and Polymers. Pergamon Press, New York (1960)

    Google Scholar 

  32. Farah, K., Kuntz, F., Kadri, O., Ghedira, L.: Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation. Radiat. Phys. Chem. 71, 337–341 (2004)

    Google Scholar 

  33. Lavalle, M., Corda, U., Fuochi, P.G., Caminati, S., Venturi, M., Kovács, A., Baranyai, M., Sáfrány, A., Miller, A.: Radiochromic film containing methyl viologen for radiation dosimetry. Radiat. Phys. Chem. 76, 1502–1506 (2007)

    Google Scholar 

  34. Abdel-Fattah, A.A., Ebraheem, S., Ali, Z.Y., Abdel-Rehim, F.: Ultraviolet and infrared spectral analysis of irradiated polyethylene films: correlation and possible application for large-dose radiation dosimetry. J. Appl. Polym. Sci. 67, 1837–1851 (1998)

    Google Scholar 

  35. Castañeda Facio, A., Benavides, R., Martinez Pardo, M.E., Uribe, R.: Electron beam crosslinking of non-lead PVC formulations. Radiat. Phys. Chem. 76, 1720–1723 (2007)

    Google Scholar 

  36. Peimel-Stuglik, Z., Fabisiak, S.: A comparison of the performance characteristics of four film dosimeters in a 10-MeV electron beam. Appl. Radiat. Isot. 66, 346–352 (2008)

    Google Scholar 

  37. Whittaker, B., Watts, M.F.: Influence of dose rate, ambient temperature and time on the radiation response of Harwell PMMA dosimeter. Radiat. Phys. Chem. 60, 101–110 (2001)

    Google Scholar 

  38. Seito, H., Ichikawa, T., Kaneko, H., Sato, H., Watanabe, Y., Kojima, T.: Characteristics study of clear polymethylmethacrylate dosimeter, Radix W, in several kGy range. Radiat. Phys. Chem. 78, 356–359 (2009)

    Google Scholar 

  39. Khan, H.M., Ahmad, G., Sattar, A., Durrani, S.K.: Radiation dosimetry using clear PMMA and PVC in the range of 5-45 kGy. J. Anal. Nucl. Chem. 125, 127–134 (1988)

    Google Scholar 

  40. Yang, B., Lu, Q., Wang, S., Townsend, P.D.: Studies on the thermoluminescence spectra and thermal stability of LiF:Mg, Cu, LiF:Mg, Cu, Na and LiF:Mg, Cu, Si. Nucl. Instrum. Meth. Phys. Res. B 239, 171–178 (2005)

    Google Scholar 

  41. Hosni, F., Farah, K., Kaouach, H., Louati, A., Chtourou, R., Hamzaoui, A.H.: Effect of gamma-irradiation on the colorimetric properties of epoxy-resin film. Potential use in dosimetric application. Nucl. Instrum. Meth. Phys. Res. B 311, 1–4 (2013)

    Google Scholar 

  42. de Magalhães, C.M.S., Macedo, Z.S., Valerio, M.E.G., Hernandes, A.C., Souza, D.N.: Preparation of composites of topaz embedded in glass matrix for applications in solid state thermoluminescence. Nucl. Instrum. Meth. Phys. Res. B 218, 277–282 (2004)

    Google Scholar 

  43. Necmeddin Yazici, A., Bedir, M., Sibel Sökücü, A.: The analysis of dosimetric thermoluminescenty glow peak of CaF2: Mn after β-irradiation. Nucl. Instrum. Meth. Phys. Res. B 259, 955–965 (2007)

    Google Scholar 

  44. McLaughlin, W., Desrosiers, M.F.: Dosimetric systems for radiation processing. Radiat. Phys. Chem. 46, 1163–1174 (1995)

    Google Scholar 

  45. Thalacker, V.P., Simpson, O.T., Postma, N.B.: Electron beam dosimeters for radiation processing. Radiat. Phys. Chem. 31, 473–479 (1988)

    Google Scholar 

  46. Cleland, M.R., Pageau, G.M.: Comparisons of X-ray and gamma-ray sources for industrial processes. Nucl. Instrum. Math. Phys. Res. B 24/25, 967–972 (1987)

    Google Scholar 

  47. Saylor, M.C., Parks, L.A., Herring, C.H.: Technical and regulatory for radiation sterilization facilities using electron beam accelerators. Nucl. Instrum. Meth. Phys. Res. B 79, 875–878 (1993)

    Google Scholar 

  48. Pilette, L.: Effects of ionizing treatments on packaging—food simulant combinations. Packag. Technol. Sci. 3, 17–20 (1990)

    Google Scholar 

  49. Zimek, Z., Przybytniak, G., Nowicki, A., Mirkowski, K., Roman, K.: Optimization of electron beam crosslinking for cables. Radiat. Phys. Chem. 161–165 (2014)

    Google Scholar 

  50. Bartoníček, B., Plaček, V., Hnát, V.: Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials. Radiat. Phys. Chem. 76, 857–863 (2007)

    Google Scholar 

  51. Charlesby, A.: Crosslinking of polyethylene. Proc. Royal Soc. (London), A 215, 187–188 (1952)

    Google Scholar 

  52. Chapiro, A.: Chemical modifications in irradiated polymers. Nucl. Instrum. Meth. Phys. Res. B 32, 111–114 (1988)

    Google Scholar 

  53. Cheng, S., Phillips, Ed, Parks, L.: Processability improvement of polyolefins through radiation-induced branching. Radiat. Phys. Chem. 79, 329–334 (2010)

    Google Scholar 

  54. Deng, P.Y., Liu, M.H., Zhang, W.X., Sun, J.Z.: Preparation and physical properties of enhanced radiation induced crosslinking of ethylene-vinyl alcohol copolymer (EVOH). Nucl. Instrum. Meth. Phys. Res. B 258, 357–361 (2007)

    Google Scholar 

  55. Yoshii, F., Suhartini, M., Sagasawa, N., Mitomo, H., Kume, T.: Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers. Nucl. Instrum. Meth. Phys. Res. B 208, 370–373 (2003)

    Google Scholar 

  56. Dadbin, S., Frounchi, M., Goudarzi, D.: Electron beam induced crosslinking of nylon 6 with and without the presence of TAC. Polym. Degrad. Stab. 89, 436–441 (2005)

    Google Scholar 

  57. Mitomo, H., Kaneda, A., Quynh, T.M., Nagasawa, N., Yoshii, F.: Improvement in heat stability of poly(l-lactic acid) by radiation-induced crosslinking. Polymer 46, 4695–4703 (2005)

    Google Scholar 

  58. Nagasawa, N., Kasai, N., Yagi, T., Yoshii, F., Tamada, M.: Radiation-induced crosslinking and post-processing of poly(l-lactic acid) composite. Radiat. Phys. Chem. 80, 145–148 (2011)

    Google Scholar 

  59. Murray, K.A., Kennedy, J.E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., Higginbotham, C.L.: The effects of high energy electron beam irradiation in air on accelerated ageing and on the structure property relationships of low density polyethylene. Nucl. Instrum. Meth. Phys. Res. B 297, 64–74 (2013)

    Google Scholar 

  60. Miličević, D., Trifunović, S., Popović, M., Vukašinović, T., Milić, Suljovrujić, E.: The influence of orientation on the radiation-induced crosslinking/oxidative behavior of different PEs. Nucl. Instrum. Meth. Phys. Res. B 260, 603–612 (2007)

    Google Scholar 

  61. Yoshiga, A., Otaguro, H., Parra, D.F., Lima, L.F.C.P., Lugao, A.B.: Controlled degradation and crosslinking of polypropylene induced by gamma radiation in acetylene. Polym. Bull. 63, 397–409 (2009)

    Google Scholar 

  62. Zaharescu, T., Feraru, E., Podină, C.: Thermal stability of ethylene propylene-diene monomer/divinylbenzene systems. Polym. Degrad. Stab. 87, 11–16 (2005)

    Google Scholar 

  63. Gillen, K.T., Clough R.L.: In: Clough, R.L., Shalaby, S.W. (eds.) ACS Symp Series 475, ch. 28. ACS, Washington DC, (1991)

    Google Scholar 

  64. Zaharescu, T., Jipa, S., Setnescu, R., Setnescu, T.: Radiation processing of polyolefin blends. Part I. Crosslinking of EPDM/PP blends. J. Appl. Polym. Sci. 77, 982–987 (2000)

    Google Scholar 

  65. Zaharescu, T., Jipa, S., Giurginca, M.: Radiochemical processing of EPDM/NB blends. J. Macromol. Sci. Pure Appl. Chem. A 35, 1093–1102 (1998)

    Google Scholar 

  66. Dubey, K.A., Bhardwaj, Y.K., Chaudhari, C.V., Sabharwal, S.: Radiation-processed styrene–butadiene-co-ethylene– propylene diene rubber blends: compatibility and swelling studies. J. Appl. Polym. Sci. 99, 3638–3649 (2006)

    Google Scholar 

  67. Chowdhury, R.: Electron-beam-induced crosslinking of natural rubber/acrylonitrile–butadiene rubber latex blends in the presence of ethoxylated pentaerythritol tetraacrylate used as a crosslinking promoter. J. Appl. Polym. Sci. 103, 1206–1214 (2007)

    Google Scholar 

  68. Xiang, Z.I., Liu, H.R., Deng, P.Y., Liu, M.H., Yin, Y., Ge, X.W.: The effect of irradiation on morphology and properties of the PET/HDPE blends with trimethylolpropane trimethacrylete (TMPTA). Polym. Bull. 63, 587–597 (2009)

    Google Scholar 

  69. Voit, W., Ware, T., Gall, K.: Radiation crosslinked shape-memory polymers. Polymer 51, 3551–3559 (2010)

    Google Scholar 

  70. Banik, I., Bhowmick, A.K.: Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiat. Phys. Chem. 58, 293–298 (2000)

    Google Scholar 

  71. Haque, M.E., Dafader, N.C., Akhtar, F., Ahmad, M.U.: Radiation dose required for the vulcanization of narural rubber latex. Radiat. Phys. Chem. 48, 505–510 (1996)

    Google Scholar 

  72. Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Advances in the processing, sterilization and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplast. Biomaterials 20, 1659–1688 (1999)

    Google Scholar 

  73. Rezanejad, S., Kokab, M.: Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856–2865 (2007)

    Google Scholar 

  74. Mahapram, S., Poompradub, S.: Preparation of natural rubber (NB) latex/low density polyethylene (LDPE) blown film and its properties. Polym. Test. 30, 716–725 (2011)

    Google Scholar 

  75. Chattopadhyay, S., Chaki, T.K., Bhowmick, A.K.: Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blends of ethylene vinylacetate copolymer and polyethylene. Radiat. Phys. Chem. 59, 501–505 (2000)

    Google Scholar 

  76. Zhu, G., Liang, G., Xu, Q., Yu, Q.: Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J. Appl. Polym. Sci. 90, 1589–1595 (2003)

    Google Scholar 

  77. Ware, T., Voit, W., Gall, K.: Effects of sensitizer length on radiation crosslinked shape-memory polymers. Radiat. Phys. Chem. 79, 446–453 (2010)

    Google Scholar 

  78. Tikku, V.K., Biswas, G., Despande, R.S., Majali, A.B., Chaki, T.K., Bhowmick, A.K.: Electron beam initiated grafting of trimethylol propane trimethacrylate onto polyethylene—structure and properties. Radial. Phys. Chem. 45, 829–833 (1995)

    Google Scholar 

  79. Gall, K., Dunn, M.L., Liu, Y.P., Finch, D., Lake, M., Munshi, N.A.: Shape-memory polymer nanocomposites. Acta Mater. 50, 5115–5126 (2002)

    Google Scholar 

  80. Hu, J.L., Zu, Y., Huang, H.H., Lu, J.: Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)

    Google Scholar 

  81. Mishra, J.K., Chang, Y.W., Lee, B.C., Ryu, S.H.: Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer. Radiat. Phys. Chem. 77, 675–679 (2008)

    Google Scholar 

  82. Rimnac, C.M., Kurtz, S.M.: Ionizing radiation and orthopaedic prostheses. Nucl. Instrum. Meth. Phys. Res. B 236, 30–37 (2005)

    Google Scholar 

  83. Miguez Suarez, J.C., de Biasi, R.S.: Effect of gamma irradiation on the ductile-to-brittle transition in ultra-high molecular weight polyethylene. Polym. Degrad. Stab. 82, 221–227 (2003)

    Google Scholar 

  84. Brunella, V., Bracco, P., Carpentieri, I., Paganini, M.C., Zanetti, M., Costa, L.: Lifetime of alkyl macroradicals in irradiated ultra-high molecular weight polyethylene. Polym. Degrad. Stab. 92, 1498–1503 (2007)

    Google Scholar 

  85. Costa, L., Carpentieri, I., Bracco, P.: Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 93, 1695–1703 (2008)

    Google Scholar 

  86. Chmielewski, A.G., Chmielewska, D.K., Michalik, J., Sampa, M.H.: Prospects and challenges in application of gamma electron and ion beams in processing of nanomaterials. Nucl. Instrum. Meth. Phys. Res. B 265, 339–346 (2007)

    Google Scholar 

  87. Chmielewski, A.G., Michalik, J., Buczkowski, M., Chmielewska, D.K.: Ionizing radiation in naotechnology. Nucl. Instrum. Meth. Phys. Res. B 236, 329–332 (2005)

    Google Scholar 

  88. Jung, C.H., Lee, D.H., Hwang, I.T., Im, D.S., Shin, J.W., Kang, P.H., Choi, J.H.: Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites. J. Nucl. Mater. 438, 41–45 (2013)

    Google Scholar 

  89. Martínez-Morlanes, M.J., Castell, P., Martínez-Nogués, V., Martinez, M.T., Alonso, P.J., Puértolas, J.A.: Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Compos. Sci. Technol. 71, 282–288 (2011)

    Google Scholar 

  90. Huegun, A., Fernández, M., Muñoz, M.E., Santamaría, A.: Rheological properties and electrical conductivity of irradiated MWCNT/PP nanocomposites. Compos. Sci. Technol. 72, 1602–1607 (2012)

    Google Scholar 

  91. Marković, G., Marinović-Cincović, M.S., Jovanović, V., Samaržija-Jovanović, S., Budinski-Simendić, J.: Gamma irradiation aging of NBR/CSM rubber nanocomposites. Compos. Part B- Eng. 43, 609–615 (2012)

    Google Scholar 

  92. Wang, B.B., Song, L., Hong, N.N., Tai, Q.L., Lu, H.D., Hu, Y.: Effect of electron beam irradiation on the mechanical and thermal properties of intumiscent flame retarded ethylene-vinyl acetate copolymer/orcanically modified montmorillonite compositions. Radiat. Phys. Chem. 80, 1275–1281 (2011)

    Google Scholar 

  93. Choi, J.H., Jung, C.-H., Kim, D.K., Suh, D.H., Nho, Y.C., Kang, P.H., Ganesan, R.: Preparation of polymer/POSS nanocomposites by radiation processing. Radiat. Phys. Chem. 78, 517 (2009)

    Google Scholar 

  94. Lee, K.Y., Kim, K.Y., Hwang, I.R., Choi, Y.S., Hong, C.H.: Thermal, tensile and morphological properties of gamma-ray irradiated epoxy-clay nanocomposites toughened with a liquid rubber. Polymer. Test. 29, 139–142 (2010)

    Google Scholar 

  95. Mohamed, R.M.: Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J. Ind. Eng. Chem. 19, 80–86 (2013)

    Google Scholar 

  96. Crăciun, E., Jitaru, I., Zaharescu, T., Jipa, S.: Qualification of epoxy resin by radiochemical ageing. Optoelectr. Adv. Mater. Rapid Commun. 4, 1819–1822 (2010)

    Google Scholar 

  97. Ahmadi, S.J., Huang, Y.D., Ren, N.Q., Mohaddespour, A., Ahmadi-Brooghani, S.Y.: The comparison of EPDM/clay nanocomposites and conventional composites in exposure of gamma irradiation. Compos. Sci. Technol. 69, 997–1003 (2009)

    Google Scholar 

  98. Planes, E., Chazeau, L., Vigier, G., Fournier, J., Stevenson-Royaud, I.: Influence of filler on mechanical properties of ATH filled EPDM during ageing by gamma irradiation. Polym. Degrad. Stab. 95, 1029–1038 (2010)

    Google Scholar 

  99. Zaharescu, T., Pleşa, I., Jipa, S.: Kinetic effects of silica nanoparticles on thermal and radiation stability of polyolefins. Polym. Bull. 70, 2981–2994 (2014)

    Google Scholar 

  100. Zaharescu, T., Jipa, S., Adrian, M., Supaphol, P.: Nanostructured isotactic polypropylene—TiO2 systems. J. Optoelectr. Adv. Mater. 10, 2205–2209 (2008)

    Google Scholar 

  101. Zaidi, L., Bruzaud, S., Kaci, M., Bourmaud, A., Gautier, N., Grohens, Y.: The effect of gamma irradiation on the morphology and properties of polylactyide/Cloisite 30B nanocomposites. Polym. Degrad. Stab. 98, 348–355 (2013)

    Google Scholar 

  102. Ciuprina, F., Zaharescu, T., Pleşa, I.: Effect of γ-radiation on dielectric properties of LDPE-Al2O3 nanocomposites. Radiat. Phys. Chem. 84, 145–150 (2013)

    Google Scholar 

  103. Khalid, M., Ismail, A.F., Ratnam, C.T., Faridah, Y., Rashmi, W., Al Khatib, M.F.: Effect of radiation dose on the properties of natural rubber nanocomposite. Radiat. Phys. Chem. 79, 1279–1285 (2010)

    Google Scholar 

  104. Choi, J.H., Jung, C.H., Kang, D.W., Hwang, I.T., Choi, J.H.: Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation. Nucl. Instrum. Meth. Phys. Res. B 287, 141–147 (2012)

    Google Scholar 

  105. Choi, J.H., Jung, C.H., Kim, D.K., Ganesan, R.: Radiation-induced grafting of inorganic particles onto polymer backbone: a new method to design polymer-based nanocomposite. Nucl. Instrum. Meth. Phys. Res. B 266, 203–206 (2008)

    Google Scholar 

  106. Janowski, B., Pielichowski, K.: Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim. Acta 478, 51–53 (2008)

    Google Scholar 

  107. Abou Zeid, M.M.: Radiation effect on properties of carbonblack filled NBR/EPDM rubber blends. Eur. Polym. J. 43, 4415–4422 (2007)

    Google Scholar 

  108. Thomas, J.K.: Fundamental aspects of the radiolysis of solid polymers, crosslinking and degradation. Nucl. Instrum. Meth. Phys. Res. B 265, 1–7 (2007)

    Google Scholar 

  109. Olejniczak, J., Rosiak, J., Charlesby, A.: Gel/dose curves for polymers undergoing simultaneous crosslinking and scission. Radiat. Phys. Chem. 37, 499–504 (1991)

    Google Scholar 

  110. Hill, D.J.T., Whittaker, A.K., Zainuddin, : water diffusion into radiation crosslinked PVA-PVP network hydrogel. Radiat. Phys. Chem. 80, 213–218 (2011)

    Google Scholar 

  111. Kadłubowski, S., Henke, A., Ulański, P., Rosiak, I.: Hydrogels of poly(vinylpyrrolidone) (PVP) and poly(acrylic acid) (PAA) synthesized by radiation-induced crosslinking of homopolymers. Radiat. Phys. Chem. 79, 261–266 (2010)

    Google Scholar 

  112. Adb El-Mohdy, H.L., Safrany, A.: Preparation of fast response superabsorbent hydrogel by radiation polymerization and crosslinking of isopropylacrylamide in solution. Radiat. Phys. Chem. 77, 273–279 (2008)

    Google Scholar 

  113. von Sonntag, C., Bothe, E., Ulanski, P., Adhikary, A.: Radical transfer reactions in polymers. Radiat. Phys. Chem. 55, 599–603 (1999)

    Google Scholar 

  114. Schmidt, T., Querner, C., Arndt, K.-F.: Characterization methods for radiation crosslinked pol(vinyl methyl ether) hydrogels. Nucl Instrum. Meth. Phys. Res. B 208, 331–335 (2003)

    Google Scholar 

  115. Rosiak, J.M., Ulanski, I.P., Pajewski, L.A., Yoshii, F., Makuuchi, K.: Radiation formation of hydrogel for biomedical purposes. Some remarks and comments. Radiat. Phys. Chem. 46, 161–168 (1995)

    Google Scholar 

  116. Varshney, L.: Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing. Nucl Instrum. Meth. Phys. Res. B 255, 343–349 (2007)

    Google Scholar 

  117. Zhou, Y., Zhao, Y.H., Wang, L., Xua, L., Zhai, M.L., Wei, S.C.: Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel. Radiat. Phys. Chem. 81, 553–560 (2012)

    Google Scholar 

  118. Lugão, A.B., Machado, L.D.B., Mirandal, L.F., Alvarez, M.R., Rosiak, J.M.: Study of wound dressing structure and hydration/dehydration properties. Radiat. Phys. Chem. 52, 319–322 (1998)

    Google Scholar 

  119. Ajji, Z., Othman, I., Rosiak, J.M.: Production of hydrogel wound dressing using gamma radiation. Nucl. Instrum. Meth. Phys. Res. B 229, 375–380 (2005)

    Google Scholar 

  120. Şahiner, N., Pekel, N., Güven, O.: Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer network. React. Funct. Polym. 39, 139–146 (1999)

    Google Scholar 

  121. Razzak, M.T., Darwis, D., Zainuddin, Z., Sukirno, S.: Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat. Phys. Chem. 62, 107–113 (2001)

    Google Scholar 

  122. Kan, C.X., Wang, C.S., Zhu, J.J., Li, H.C.: Formation of gold and silver nanocomposites within polyvinylpyrrolidone (PVP) gel. J. Solid State Chem. 183, 858–865 (2010)

    Google Scholar 

  123. Momesso, R.G.R.A.P., Moreno, C.S., Rogero, S.O., Rogero, J.R., Spencer, P.J., Lugão, A.B.: Radiation stability of resveratrol in immobilization on poly(vinyl pyrrolidone) hydrogel for dermatological use. Radiat. Phys. Chem. 79, 283–285 (2010)

    Google Scholar 

  124. Ferraz, C.C., Varca, G.H.C., Lopes, P.S., Mator, M.B., Lugão, A.B.: Radiation-synthesized polyacrylamide hydrogels for proteins release. Radiat. Phys. Chem. 94, 186–189 (2014)

    Google Scholar 

  125. Varca, G.H.C., Ferraz, C.C., Lopes, P.S., Mathor, M.B., Grasselli, M., Lugão, A.B.: Radiation-synthesized protein-based nanoparticles for biomedical purposes. Radiat. Phys. Chem. 94, 181–185 (2014)

    Google Scholar 

  126. Abd El-Mohdy, H.L., Hegazy, E.A., El-Nesr, E.M., El-Wahab, M.A.: Metal sorption behavior of poly(N-vinyl-2-pyrrolidone)/(acrylic acid-co-styrene) hydrogels synthesized by gamma radiation. J. Environ. Chem. Eng. 1, 328–338 (2013)

    Google Scholar 

  127. Radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents for separation purposes, IAEA-TECDOC 1465 (2005)

    Google Scholar 

  128. Gottlieb, R., Schmidt, T., Arndt, K.-F.: Synthesis of temperature-sensitive hydrogel blends by high-energy irradiation. Nucl. Instrum. Meth. Phys. Res. B 236, 371–376 (2005)

    Google Scholar 

  129. Bhunia, T., Goswami, L., Chattopadhyay, D., Bandyopadhyay, A.: Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes. Nucl. Instrum. Meth. Phys. Res. B 269, 1822–1828 (2011)

    Google Scholar 

  130. Burillo, G., Briones, M., Adem, E.: IPN’s of acrylic acid and N-isopropylacrylamide by gamma and electron beam irradiation. Nucl. Instrum. Meth. Phys. Res. B 265, 104–108 (2007)

    Google Scholar 

  131. Casimiro, M.H., Gil, M.H., Leal, J.P.: Drug release assays from new chitosan/pHEMA membranes obtained by gamma irradiation. Nucl. Instrum. Meth. Phys. Res. B 265, 406–409 (2007)

    Google Scholar 

  132. Safrany, A.: Macroporous gels with fast response prepared by e-beam crosslinking of poly(N-isopropylacrylamide) solution. Nucl. Instrum. Meth. Phys. Res. B 236, 587–593 (2005)

    Google Scholar 

  133. Jipa, I.M., Stroescu, M., Stoica-Guzun, A., Dobre, T., Jinga, S., Zaharescu, T.: Effect of gamma irradiation on biopolymer films of poly(vinyl alcohol) and bacterial cellulose. Nucl. Instrum. Meth. Phys. Res. B 278, 82–87 (2012)

    Google Scholar 

  134. Ahmed, E.M.: Hybrid composites prepared from industrial wastes: mechanical and swelling behavior. J. Adv. Res. doi:10.1016/j.jare.2013.12.002

  135. Safrany, A.: Radiation processing: synthesis and modification of biomaterials for medical use. Nucl. Instrum. Meth. Phys. Res. B 131, 376–381 (1997)

    Google Scholar 

  136. Nho, Y.C., Lee, J.H.: Radiation of postsurgical adhesion formation with hydrogels synthesized by radiation. Nucl. Instrum. Meth. Phys. Res. B 236, 277–282 (2005)

    Google Scholar 

  137. Burillo, G., Clough, R.L., Czvikovszky, T., Guven, O., Le Moel, A., Liu, W.W., Singh, A., Yang, J.T., Zaharescu, T.: Polymer recycling: potential application of radiation technology. Radiat. Phys. Chem. 64, 41–51 (2002)

    Google Scholar 

  138. Żenkiewicz, M., Dzwonkowski, J.: Effects of electron radiation and compatibilizers on impact strength of composites of recycled polymers. Polym. Test. 26, 903–907 (2007)

    Google Scholar 

  139. Dalai, S., Wenxiu, C.: Radiation effects on HDPE/EVA blends. J. Appl. Polym. Sci. 86, 553–558 (2002)

    Google Scholar 

  140. Burillo, G., Galicia, M., del Pilar Carreo, M., Vázquez, M., Adem, E.: Crosslinking of recycled polyethylene by gamma irradiation in the presence of sensitizers. Radiat. Phys. Chem. 60, 73–78 (2001)

    Google Scholar 

  141. Burillo, G., Herrera-Franco, P., Vazquez, M., Adem, E.: Compatibilization of recycled and virgin PET with radiation-oxidized HDPE. Radiat. Phys. Chem. 63, 241–244 (2002)

    Google Scholar 

  142. Mészáros, L., Bárány, T., Czvikovszky, T.: EB-promoted recycling of waste tire rubber with polyolefins. Radiat. Phys. Chem. 81, 1357–1360 (2012)

    Google Scholar 

  143. Karaağaç, B., Şen, M., Deniz, V., Güven, O.: Recycling of gamma irradiated inner tubes in butyl based rubber. Nucl. Instrum. Meth. Phys. Res. B 265, 290–293 (2005)

    Google Scholar 

  144. Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J.M.: Compatibilisation of polyethylene/ground tyre rubber blends by γ-irradiation. Polym. Degrad. Stab. 91, 2375–2379 (2006)

    Google Scholar 

  145. Zaharescu, T., Feraru, E., Podină, C., Jipa, S.: Modifications of EPDM by gamma irradiation in hydrocarbon environment. Polym. Degrad. Stab. 89, 373–381 (2005)

    Google Scholar 

  146. Jones, R.A., Groves, D.J., Ward, I.M., Taylor, D.J.R., Stepto, R.F.T.: Gel fraction and chain reactions in irradiated polyethylenes. Nucl. Instrum. Meth. Phys. Res. B 151, 213–217 (1999)

    Google Scholar 

  147. Scagliusi, R.S., Cardoso, E.C.L., Lugão, A.B.: Radiation-induced degradation of butyl rubber vulcanized by three different crosslinking systems. Radiat. Phys. Chem. 81, 991–994 (2012)

    Google Scholar 

  148. Scagliusi, R.S., Cardoso, E.C.L., Lugão, A.B.: Effect of gamma radiation on chlorobutyl rubber vulcanized by three crosslinking systems. Radiat. Phys. Chem. 81, 1370–1373 (2012)

    Google Scholar 

  149. Zaharescu, T.: Degradation of ethylene-propylene copolymer in the presence of phenolic antioxidants. J. Mater. Sci. Lett. 14, 923–925 (1995)

    Google Scholar 

  150. Bhattacharya, A., Misra, B.N.: Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci. 29, 767–814 (2004)

    Google Scholar 

  151. Garnett, J.L.: Grafting. Radiat. Phys. Chem. 14, 79–99 (1979)

    Google Scholar 

  152. Stannett, V.T.: Radiation grafting—state-of-the art. Radiat. Phys. Chem. 35, 82–87 (1990)

    Google Scholar 

  153. Moura, E., Somessari, E.S.R., Silveira, C.G., Paes, H.A., Souza, C.A., Fernandes, W., Manzoli, J.E., Geraldo, A.B.C.: Influence of physical properties on mutual polymer grafting by electron beam irradiation. Radiat. Phys. Chem. 80, 175–181 (2011)

    Google Scholar 

  154. Ranogajec, F.: Effect of solvent on radiation grafting and crosslinking of polyethylene. Radiat. Phys. Chem. 76, 1381–1384 (2007)

    Google Scholar 

  155. Hassanpour, S.: Radiation grafting of styrene and acrylonitrile to cellulose and polyethylene. Radiat. Phys. Chem. 55, 41–45 (1999)

    Google Scholar 

  156. Catarí, E., Albano, C., Karam, A., Perera, R., Silva, P., González, J.: Grafting of a LLDPE using gamma irradiation. Nucl. Instrum. Meth. Phys. Res. B 236, 338–342 (2005)

    Google Scholar 

  157. Legocka, I., Zimek, Z., Mirkowski, K., Nowicki, A.: Preliminary study on the application PE filler modified by radiation. Radiat. Phys. Chem. 57, 411–416 (2000)

    Google Scholar 

  158. Li, Z.R., Wang, H.L.: Radiation-induced grafting of glycidyl methacrylate onto high density polyethylene (HDPE) and radiation lamination of HDPE. J. Appl. Polym. Sci. 96, 772–779 (2005)

    Google Scholar 

  159. Ferreira, L.M., Falcão, A.N., Gil, M.H.: Modification of LDPE molecular structure by gamma irradiation for bioapplications. Nucl. Instrum. Meth. Phys. Res. B 236, 513–520 (2005)

    Google Scholar 

  160. Gwon, S.J., Choi, J.H., Sohn, J.Y., An, S.J., Ihm, Y.E., Nho, Y.C.: Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries. Instrum. Meth. Phys. Res. B 266, 3387–3391 (2008)

    Google Scholar 

  161. Abdel-Hady, E.E., El-Toony, M.M., Abdel-Hamed, M.O.: Grafting of glycidyl methacrylate/styrene onto polyvinyl fluoride membranes for proton exchange fuel cell. Electrochim. Acta 103, 32–37 (2013)

    Google Scholar 

  162. Souzy, R., Ameduri, B.: Functional fluoropolymers for fuel cell membranes. Prog. Polym. Sci. 30, 644–687 (2005)

    Google Scholar 

  163. Gubler, L., Slaski, M., Wallasch, F., Wokaun, A., Scherer, G.G.: Radiation grafted fuel cell membranes based on co-grafting of a-methylstyrene and methacrylonitrile into a fluoropolymer base film. J. Membr. Sci. 339, 68–77 (2009)

    Google Scholar 

  164. Li, J.Y., Matsuura, A., Kakigi, T., Miura, T., Oshima, A., Washio, M.: Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting. J. Power Sources 161, 99–105 (2006)

    Google Scholar 

  165. Chen, J.H., Li, D.R., Koshikawa, H., Asano, M., Maekawa, Y.: Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cell. J. Membr. Sci. 362, 488–494 (2010)

    Google Scholar 

  166. Sherazi, T.A., Ahmad, S., Akram Kashmiri, S., Kim, D.S., Guiver, M.D.: Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder for polymer electrolyte fuel cell application. II. Sulfonation and characterization. J. Membr. Sci. 333, 59–67 (2009)

    Google Scholar 

  167. Nho, Y.C., Chen, J., Jin, J.H.: Grafting polymerization of styrene onto preirradiated polypropylene fabric. Radiat. Phys. Chem. 54, 317–322 (1999)

    Google Scholar 

  168. Vahdat, A., Bahrami, H., Ansari, N., Ziaie, F.: Radiation grafting of styrene onto polypropylene fibers by a 10 MeV electron beam. Radiat. Phys. Chem. 76, 787–793 (2007)

    Google Scholar 

  169. Sheikh, N., Akhavan, A., Ataeivarjovi, E.: Radiation grafting of styrene on starch with high efficiency. Radiat. Phys. Chem. 85, 189–192 (2013)

    Google Scholar 

  170. Yu, H.Y., Shi, H., Zeng, X.M., Bao, M., Zhao, X.Q.: A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films. Radiat. Phys. Chem. 78, 497–500 (2009)

    Google Scholar 

  171. Barsbay, M., Güven, O., Davis, T.P., Barner-Kowollik, C., Barner, L.: RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via gamma-radiation. Polymer 50, 973–982 (2009)

    Google Scholar 

  172. Lappan, U., Geissler, U., Uhlmann, S.: Radiation-induced grafting of styrene into radiation modified fluoropolymer films. Nucl. Instrum. Meth. Phys. Res. B 236, 413–419 (2005)

    Google Scholar 

  173. Sato, K., Ikeda, S., Iida, M., Oshima, A., Tabata, Y., Washio, M.: Studyon poly-electrolyte membrane of crosslinked PRFE by radiation grafting. Nucl. Instrum. Meth. Phys. Res. B 208, 424–428 (2003)

    Google Scholar 

  174. Katsuma, Y.: Radiation induced degradation of polymers-an approach by using liquid paraffins as a model system. Angew. Makromol. Chem. 252, 89–101 (1997)

    Google Scholar 

  175. Zaharescu, T., Jipa, S., Supaphol, P.: Thermal stability of isotactic polypropylene modified with CaCO3 nanoparticles. Polym. Bull. 64, 783–790 (2010)

    Google Scholar 

  176. Seguchi, T., Tamura, K., Ohshima, T., Shimada, A., Kudoh, H.: Degradation mechanism of cable insulation materials during radiation-thermal ageing in radiation environment. Radiat. Phys. Chem. 80, 268–273 (2011)

    Google Scholar 

  177. Celina, M.: Review of polymer oxidation and its relationship with material performances and lifetime prediction. Polym. Degrad. Stab. 98, 2419–2429 (2013)

    Google Scholar 

  178. Zaharescu, T., Cazac, C., Jipa, S., Setnescu, R.: Radiation processing of polyisobutylene. Nucl. Instrum. Meth. Phys. Res. B 185, 360–364 (2001)

    Google Scholar 

  179. Burillo, G., Tenorio, L., Bucio, E., Adem, E., Lopez, G.P.: Electron beam irradiation effects on poly(ethylene terephtalate). Radiat. Phys. Chem. 76, 1728–1731 (2007)

    Google Scholar 

  180. Zaharescu, T., Giurginca, M., Jipa, S.: Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants. Polym. Degrad. Stab. 63, 245–251 (1999)

    Google Scholar 

  181. Pandey, J.K., Raghunatha Reddy, K., Pratheep Kumar, A., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 88, 234–250 (2005)

    Google Scholar 

  182. Kim, S.K., Kwen, H.D., Choi, S.H.: Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay. Radiat. Phys. Chem. 81, 519–523 (2012)

    Google Scholar 

  183. Kharazmi, A., Saion, E., Faraji, N., Hussin, R.M., Yunus, W.M.M.: Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method. Radiat. Phys. Chem. 97, 212–216 (2014)

    Google Scholar 

  184. Krklješ, A.N., Marinović-Cincović, M.T., Kacarević-Popović, Z.M., Nedeljković, J.M.: Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur. Polym. J. 43, 2171–2176 (2007)

    Google Scholar 

  185. Xu, X.L., Yin, Y.D., Ge, X.W., Wu, H.K., Zhang, Z.H.: γ-Radiation synthesis of poly(acrylic acid)—metal nanocomposites. Mater. Lett. 37, 354–358 (1998)

    Google Scholar 

  186. Abou Taleb, M.F., Hegazy, D.E., Ismail, S.A.: Radiation synthesis, characterization and dye adsorption of alginate-organophilic montmorillonite nanocomposite. Carbohydr. Polym. 87, 2263–2269 (2012)

    Google Scholar 

  187. Robinette, E.J., Palmese, G.R.: Synthesis of polymer-polymer nanocomposites using radiation grafting techniques. Nucl. Instrum. Meth. Phys. Res. 236, 216–222 (2005)

    Google Scholar 

  188. Ni, Y.H., Ge, X.W., Zhang, Z.C.: Fabrication of CdS/polyacrylonitrile nanocomposites by γ-irradiation in an ethanol solution. Mater. Sci. Eng. B 130, 61–65 (2006)

    Google Scholar 

  189. Dintcheva, N.Tz., Alessi, S., Arrigo, R., Przybytniak, G., Spadaro, G.: Influence of the e-beam irradiation and photo-oxidation aging on the structure and properties of LDPE-OMMT nanocomposite films. Radiat. Phys. Chem. 81, 432–436 (2012)

    Google Scholar 

  190. Misheva, M., Djourelov, N., Zamfirova, G., Gaydarov, V., Cerrada, M.L., Rodríguez-Amor, V., Pérez, E.: Effect of compatibilizer and electron irradiation on free-volume and microhardness of syndiotactic polypropylene/clay nanocomposites. Radiat. Phys. Chem. 77, 138–145 (2008)

    Google Scholar 

  191. Masellini-Varlot, K., Vigier, G., Vermogen, A., Gauthier, C., Cavaille, J.Y.: Quantitative structural characterization of polymer-clay nanocomposites and discussion of an ideal microstructure, leading to the highest mechanical reinforcement. J. Polym. Sci., Part B Polym. Phys. 45, 1243–1251 (2007)

    Google Scholar 

  192. Yidirim, Y., Oral, A.: The influence of γ-ray irradiation on the thermal stability and molecular weight of poly(L-Lactic acid) and its nanocomposites. Radiat. Phys. Chem. 96, 69–74 (2014)

    Google Scholar 

  193. Jovanović, Z., Jovanović, Ž., Krklješ, A., Stojkovska, J., Tomić, S., Obradović, B., Mišković-Stanković, V., Kačarević-Popović, Z.: Synthesis and characterization of silver/polyvinyl 2-pyrrolidone hydrogel nanocomposite obtained in situ radiolytic method. Radiat. Phys. Chem. 80, 1208–1215 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaharescu, T. (2015). Radiation Effects on Polymer-Based Systems. In: Visakh, P., Arao, Y. (eds) Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03464-5_6

Download citation

Publish with us

Policies and ethics