Skip to main content

Effect of Thermo-oxidation on the Mechanical Performance of Polymer Based Composites for High Temperature Applications

  • Chapter
  • First Online:
Thermal Degradation of Polymer Blends, Composites and Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1622 Accesses

Abstract

In the present study the effect of thermo-oxidation on the mechanical properties of polymer based composites has been reported for high temperature applications. The polymer based composites with high thermal stability and future trend towards modification of this type of composites have been discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)

    Article  Google Scholar 

  2. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42, 579–588 (2011)

    Article  Google Scholar 

  3. Salavatian, M., Smith, L.: An improved analytical model for shear modulus of fiber reinforced laminates with damage. Compos. Sci. Technol. 105, 9–14 (2014)

    Article  Google Scholar 

  4. Yu, T., Jiang, N., Li, Y.: Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos. Sci. Technol. 104, 26–33 (2014)

    Article  Google Scholar 

  5. Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., Subrahmanyam, Ch.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 1–7 (2013)

    Google Scholar 

  6. Bell, J.M., Goh, R.G.S, Waclawik, E.R., Giulianini, M., Motta, N.: Polymer-carbon nanotube composites: basic science and applications. In: Cairney, J.M., Ringer, S.P., Wuhrer, R. (eds.) Materials Forum, vol. 32, pp. 144152 (2008)

    Google Scholar 

  7. Harle, S.M.: The performance of natural fiber reinforced polymer composites: review. Int. J. Civ. Eng. Res. 5, 285–288 (2014)

    Google Scholar 

  8. Lee, B.L., Holl, M.W.: Effects of moisture and thermal cycling on in-plane shear properties of graphite fibre-reinforced cyanate ester resin composites. Compos. A: Appl. Sci. Manuf. 27, 1015–1022 (1996)

    Article  Google Scholar 

  9. Doh, G.-H., Lee, S.-Y., Kang, I.-A., Kong, Y.-T.: Thermal behavior of liquefied wood polymer composites (LWPC). Compos. Struct. 68, 103–108 (2005)

    Article  Google Scholar 

  10. Hanu, L.G., Simon, G.P., Cheng, Y.-B.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)

    Article  Google Scholar 

  11. Elyashevich, G.K., Sidorovich, A.V., Smirnov, M.A., Kuryndin, I.S., Bobrova, N.V., Trchová, M., Stejskal, J.: Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films. Polym. Degrad. Stab. 91, 2786–2792 (2006)

    Article  Google Scholar 

  12. Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. A: Appl. Sci. Manuf. 37, 114–121 (2006)

    Article  Google Scholar 

  13. Shebani, A.N., van Reenen, A.J., Meincken, M.: The effect of wood extractives on the thermal stability of different wood-LLDPE composites. Thermochim. Acta 481, 52–56 (2009)

    Article  Google Scholar 

  14. Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F., Gao, W.: Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew. Energy 34, 2117–2123 (2009)

    Article  Google Scholar 

  15. Liu, T.X., Huang, S.: Morphology and thermal behavior of polymer/carbon nanotube composites. Physical Properties and Applications of Polymer Nanocomposites, pp. 529–562. Woodhead Publishing, Cambridge (2010)

    Google Scholar 

  16. Su, S.P., Xu, Y.H., China, P.R., Wilkie, C.A.: Thermal degradation of polymer–carbon nanotube composites. Polymer–Carbon Nanotube Composites, pp. 482–510 (2011)

    Google Scholar 

  17. Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)

    Article  Google Scholar 

  18. Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S.: Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49, 198–205 (2011)

    Article  Google Scholar 

  19. Sliwa, F., Bounia, N.E., Marin, G., Charrier, F., Malet, F.: A new generation of wood polymer composite with improved thermal stability. Polym. Degrad. Stab. 97, 496–503 (2012)

    Article  Google Scholar 

  20. Subramaniam, K., Das, A., Häußler, L., Harnisch, C., Stöckelhuber, K.W., Heinrich, G.: Enhanced thermal stability of polychloroprene rubber composites with ionic liquid modified MWCNTs. Polym. Degrad. Stab. 97, 776–785 (2012)

    Article  Google Scholar 

  21. Boon, M.S., Serena Saw, W.P., Mariatti, M.: Magnetic, dielectric and thermal stability of Ni–Zn ferrite-epoxy composite thin films for electronic applications. J. Magn. Magn. Mater. 324, 755–760 (2012)

    Article  Google Scholar 

  22. Ray, S.S.: Thermal stability and flammability of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements. Environmentally Friendly Polymer Nanocomposites, pp. 295–327. Woodhead Publishing, Cambridge (2013)

    Google Scholar 

  23. Yang, D., Zhang, W., Yao, R., Jiang, B.: Thermal stability enhancement mechanism of poly(dimethylsiloxane) composite by incorporating octavinyl polyhedral oligomeric silsesquioxanes. Polym. Degrad. Stab. 98, 109–114 (2013)

    Article  Google Scholar 

  24. de Oliveira, M.C.L., Ett, G., Antunes, R.A.: Corrosion and thermal stability of multi-walled carbon nanotube-graphite-acrylonitrile-butadiene-styrene composite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 221, 345–355 (2013)

    Article  Google Scholar 

  25. Realinho, V., Haurie, L., Antunes, M., Velasco, J.I.: Thermal stability and fire behaviour of flame retardant high density rigid foams based on hydromagnesite-filled polypropylene composites. Compos. B Eng. 58, 553–558 (2014)

    Article  Google Scholar 

  26. Jiang, S., Gui, Z., Shi, Y., Zhou, K., Yuan, B., Bao, C., Lo, S., Hu, Y.: Bismuth subcarbonate nanoplates for thermal stability, fire retardancy and smoke suppression applications in polymers: a new strategy. Polym. Degrad. Stab. 107, 1–9 (2014)

    Article  Google Scholar 

  27. Lin, J., Zhang, P., Zheng, C., Wu, X., Mao, T., Zhu, M., Wang, H., Feng, D., Qian, S., Cai, X.: Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl. Surf. Sci. 316, 114–123 (2014)

    Article  Google Scholar 

  28. Panaitescu, D.M., Vuluga, Z., Ghiurea, M., Iorga, M., Nicolae, C., Gabor, R.: Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos. B Eng. 69, 286–295 (2015)

    Article  Google Scholar 

  29. Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: galvanic corrosion and thermal stability evaluation. Mater. Des. 65, 780–788 (2015)

    Article  Google Scholar 

  30. Fitaroni, L.B., de Lima, J.A., Cruz, S.A., Waldman, W.R.: Thermal stability of polypropylene–montmorillonite clay nanocomposites: limitation of the thermogravimetric analysis. Polym. Degrad. Stab. 111, 102–108 (2015)

    Article  Google Scholar 

  31. An, N., Tandon, G.P., Pochiraju, K.V.: Thermo-oxidative performance of metal-coated polymers and composites. Surf. Coat. Technol. 232, 166–172 (2013)

    Article  Google Scholar 

  32. Bian, L., Xiao, J., Zeng, J., Xing, S., Yin, C., Jia, A.: Effects of thermal treatment on the mechanical properties of poly(p-phenylene benzobisoxazole) fiber reinforced phenolic resin composite materials. Mater. Des. 230–235. Elsevier, Amsterdam (2014)

    Google Scholar 

  33. Minervino, M., Gigliotti, M., Lafarie-Frenot, M.C., Grandidier, J.C.: The effect of thermo-oxidation on the mechanical behaviour of polymer epoxy materials. Polym. Testing 32, 1020–1028 (2013)

    Article  Google Scholar 

  34. Upadhyaya, P., Roy, S., Haque, M.H., Lu, H.: Influence of nano-clay compounding on thermo-oxidative stability and mechanical properties of a thermoset polymer system. Compos. Sci. Technol. 84, 8–14 (2013)

    Article  Google Scholar 

  35. Vu, D.Q., Gigliotti, M., Lafarie-Frenot, M.C.: Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer–matrix composite. Compos. A: Appl. Sci. Manuf. 43, 577–586 (2012)

    Article  Google Scholar 

  36. Li, K., Wang, K., Zhan, M., Xu, W.: The change of thermal–mechanical properties and chemical structure of ambient cured DGEBA/TEPA under accelerated thermo-oxidative aging. Polym. Degrad. Stab. 98, 2340–2346 (2013)

    Article  Google Scholar 

  37. Vu, D.-Q., Gigliotti, M., Lafarie-Frenot, M.C.: The effect of thermo-oxidation on matrix cracking of cross-ply [0/90]S composite laminates. Compos. A: Appl. Sci. Manuf. 44, 114–121 (2013)

    Article  Google Scholar 

  38. Ammar-Khodja, I., Picard, C., Fois, M., Marais, C., Netchitaïlo, P.: Preliminary results on thermo-oxidative ageing of multi-hole carbon/epoxy composites. Compos. Sci. Technol. 69, 1427–1431 (2009)

    Article  Google Scholar 

  39. Li, W., Dichiara, A., Zha, J., Su, Z., Bai, J.: On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos. Sci. Technol. 103, 36–43 (2014)

    Article  Google Scholar 

  40. Pochiraju, K., Tandon, G.P.: Interaction of oxidation and damage in high temperature polymeric matrix composites. Compos. A: Appl. Sci. Manuf. 40, 1931–1940 (2009)

    Article  Google Scholar 

  41. Gigliotti, M., Olivier, L., Vu, D.Q., Grandidier, J.-C., Lafarie-Frenot, M.C.: Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures. J. Mech. Phys. Solids 59, 696–712 (2011)

    Article  Google Scholar 

  42. Rasselet, D., Ruellan, A., Guinault, A., Miquelard-Garnier, G., Sollogoub, C., Fayolle, B.: Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. Eur. Polymer J. 50, 109–116 (2014)

    Article  Google Scholar 

  43. Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)

    Article  Google Scholar 

  44. Yan, N., Buonocore, G., Lavorgna, M., Kaciulis, S., Balijepalli, S.K., Zhan, Y., Xia, H., Ambrosio, L.: The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 102, 74–81 (2014)

    Article  Google Scholar 

  45. Yang, L., Thomason, J.L., Zhu, W.: The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene. Compos. A: Appl. Sci. Manuf. 42, 1293–1300 (2011)

    Article  Google Scholar 

  46. Dominkovics, Z., Hári, J., Fekete, E., Pukánszky, B.: Thermo-oxidative stability of polypropylene/layered silicate nanocomposites. Polym. Degrad. Stab. 96, 581–587 (2011)

    Article  Google Scholar 

  47. Bullions, T.A., McGrath, J.E., Loos, A.C.: Thermal-oxidative aging effects on the properties of a carbon fiber-reinforced phenylethynyl-terminated poly(etherimide). Compos. Sci. Technol. 63, 1737–1748 (2003)

    Article  Google Scholar 

  48. Huang, W., Zou, B., Zhao, Y., Meng, X., Wang, C., Cao, X., Wang, Z.: Fabrication of novel thermal barrier coating on polymer composites via the combined sol–gel/sealing treatment process. Appl. Surf. Sci. 258, 9058–9066 (2012)

    Article  Google Scholar 

  49. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)

    Article  Google Scholar 

  50. Dueramae, I., Jubsilp, C., Takeichi, T., Rimdusit, S.: High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos. B Eng. 56, 197–206 (2014)

    Article  Google Scholar 

  51. Lopes, A.C., Martins, P., Lanceros-Mendez, S.: Aluminosilicate and aluminosilicate based polymer composites: present status, applications and future trends. Prog. Surf. Sci. 89, 239–277 (2014)

    Article  Google Scholar 

  52. Karger-Kocsis, J., Bárány, T.: Single-polymer composites (SPCs): status and future trends. Compos. Sci. Technol. 92, 77–94 (2014)

    Article  Google Scholar 

  53. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  54. Lee, K.-Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 15–27 (2014)

    Article  Google Scholar 

  55. Kumar, A.P., Depan, D., Tomer, N.S., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)

    Article  Google Scholar 

  56. Zandén, C., Luo, X., Ye, L., Liu, J.: A new solder matrix nano polymer composite for thermal management applications. Compos. Sci. Technol. 94, 54–61 (2014)

    Article  Google Scholar 

  57. Lee, K.-Y., Bismarck, A.: Creating hierarchical structures in cellulosic fibre reinforced polymer composites for advanced performance. Natural Fibre Composites, pp. 84–102. Woodhead Publishing, Cambridge (2014)

    Google Scholar 

  58. Yuan, B., Bao, C., Song, L., Hong, N., Liew, K.M., Hu, Y.: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)

    Article  Google Scholar 

  59. Xu, S., Girouard, N., Schueneman, G., Shofner, M. L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589–6598 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. K. Dasgupta, Director, CSIR–Central Glass and Ceramic Research Institute (CSIR–CGCRI), Kolkata–700 032, India, for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumana Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, S. (2015). Effect of Thermo-oxidation on the Mechanical Performance of Polymer Based Composites for High Temperature Applications. In: Visakh, P., Arao, Y. (eds) Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03464-5_4

Download citation

Publish with us

Policies and ethics