Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The chapter coalesces literature studies on recent advances concerning the thermal behavior of different thermosetting blends. The introduction debates the general issue concerning polymer blends, that being the occurrence of phase separation phenomena and lists a series of possibilities to overcome these undesired aspects. The introduction section also presents the most common polymers used as crosslinked scaffolds either individual or for different multicomponent polymeric materials. The subchapters that follow are focused on recent studies on the thermal stability and degradation of thermosetting blends, effect of reinforcement and nanofillers on the thermal stability of thermosetting blends and applications and future trends of thermosetting blends, dealing with the latest issues and trying to reveal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Utracki, L.A.: In: Utracki, L.A. (ed.) Polymer Blends Handbook, vol. 1. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  2. Thomas, R., Vijayan, P., Thomas, S.: Recycling of thermosetting polymers. In: Fainleib, A., Grigoryeva, O. (eds.) Recent Developments in Polymer Recycling, pp. 122–129. Transworld Research Network, Kerala (2011)

    Google Scholar 

  3. Irfan, M.H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, pp. 78–96, 230–239. Springer Science and Business Media, Dodrecht (1998)

    Google Scholar 

  4. Skiest, I.: Handbook of Adhesives, 2nd edn, pp. 12–17. Litton Educational Publishing, New York (1977)

    Google Scholar 

  5. Benson, L.M.: Polymer Blends: A Comprehensive Review, pp. 65–108. Carl Hanser Verlag, Munich (2007)

    Google Scholar 

  6. Rosu, D., Rosu, L., Varganici, C.-D.: The thermal stability of some semi-interpenetrated polymer networks based on epoxy resin and aromatic polyurethane. J. Anal. Appl. Pyrol. 100, 103–110 (2013)

    Google Scholar 

  7. Varganici, C.-D., Rosu, L., Rosu, D., Simionescu, B.C.: Miscibility studies of some semi-interpenetrating polymer networks based on an aromatic polyurethane and epoxy resin. Compos. B Eng. 50, 273–278 (2013)

    Google Scholar 

  8. Fox, T.G.: Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1, 123 (1956)

    Google Scholar 

  9. Gordon, M., Taylor, J.: Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500 (1952)

    Google Scholar 

  10. Cristea, M., Ibanescu, S., Cascaval, C.N., Rosu, D.: Dynamic mechanic analysis of polyurethane-epoxy interpenetrating polymer networks. High Perform. Polym. 21, 608–621 (2009)

    Google Scholar 

  11. Rosu, D., Tudorachi, N., Rosu, L.: Investigations on the thermal degradation of a MDI based polyurethane elastomer. J. Anal. Appl. Pyrol. 89, 152–158 (2010)

    Google Scholar 

  12. Rosu, D., Rosu, L., Brebu, M.: Thermal stability of silver sulfathiazole-epoxy resin network. J. Anal. Appl. Pyrol. 92, 10–18 (2011)

    Google Scholar 

  13. Friedman, H.L.: Kinetic of thermal degradation of char forming plastics from thermogravimetry-application of phenolic plastics. J. Polym. Sci. C6, 183–195 (1965)

    Google Scholar 

  14. Ozawa, T.: A new method of analysing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1866–1881 (1965)

    Google Scholar 

  15. Opferman, J.: Kinetic analysis using multivariate non-linear regression. J. Therm. Anal. Calorim. 60, 641–658 (2000)

    Google Scholar 

  16. Galwey, A.K., Brown, M.E.: Kinetic background to thermal analysis and calorimetry. In: Brown, M.E. (ed.) Handbook of Thermal Analysis and Calorimetry, pp. 169–171. Elsevier, Amsterdam (1998)

    Google Scholar 

  17. Denq, B.L., Chin, W.Y., Lin, K.F.: Kinetic model of thermal degradation of polymers from nonisothermal process. J. Appl. Polym. Sci. 66, 1855–1867 (1997)

    Google Scholar 

  18. Tiptipakorn, S., Damrongsakkul, S., Ando, S., Hemvichian, K., Rimdusit, S.: Thermal degradation behaviours of polybenzoxazine and silicone polyimide blends. Polym. Degrad. Stab. 92, 1265–1278 (2007)

    Google Scholar 

  19. Rosu, D., Rosu, L., Mustata, F., Varganici, C.-D.: Effect of UV radiation on some semi-interpenetrating polymer networks basedon polyurethane and epoxy resin. Polym. Degrad. Stab. 97, 1261–1269 (2012)

    Google Scholar 

  20. Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mater. Sci. Eng. A 527, 917–926 (2010)

    Google Scholar 

  21. Varshney, A., Mathur, R.M., Prajapati, K.: Thermal characteristics of oxazolidone modified epoxy anhydride blends. Int. J. Chem. 4(3), 113–120 (2012)

    Google Scholar 

  22. Knop, A., Scheib, W.: Chemistry and Application of Phenolic Resin. Springer, New York (1979)

    Google Scholar 

  23. Gardziella, A., Knop, A., Pilato, L.A.: Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, 2nd edn. Springer, Germany (2000)

    Google Scholar 

  24. Wolfgang, H.: ‘Phenolic Resins’ in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  25. Wang, H., Yan, Y., Yu, Y., Zhao, T., Zhi, L.: Synthesis of novolac/layered silicate nanocomposites by reaction exfoliation using acid-modified montmorillonite. Macromol. Rapid Commun. 23, 44–48 (2002)

    Google Scholar 

  26. Bandyopadhyay, D., Chakrabarty, D., Mandal, P.K., Goswami, S.: Novolac resin-poly(ethyl methacrylate) interpenetrating polymer networks: morphology and mechanical and thermal properties. J. Appl. Polym. Sci. 90, 412–420 (2003)

    Google Scholar 

  27. Goswami, S., Nad, S., Chakrabarty, D.: Modification of novolac resin by interpenetrating network formation with poly(butyl acrylate). J. Appl. Polym. Sci. 97, 2407–2417 (2005)

    Google Scholar 

  28. Goswami, S., Kiran, K.: Application of Kissinger analysis to glass transition and study of thermal degradation kinetics of phenolic-acrylic IPNs. Bull. Mater. Sci. 35(4), 657–664 (2012)

    Google Scholar 

  29. Goswami, S., Chakrabarty, D.: Synthesis and characterization of sequential interpenetrating polymer networks of novolac resin and poly(ethyl acrylate). J. Appl. Polym. Sci. 99, 2857–2867 (2006)

    Google Scholar 

  30. Honmute, S., Ganachari, S.V., Bhat, R., Naveen, H.M.P., Kumar, D.S., Venkatarman, H.A.: Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int. J. Sci. Res. 1(2), 102–106 (2012)

    Google Scholar 

  31. Garg, P., Singh, R.P., Choudhary, V.: Selective polydimethylsiloxane/polyimide blended IPN pervaporation membrane for methanol/toluene azeotrope separation. Sep. Purif. Technol. 76, 407–418 (2011)

    Google Scholar 

  32. Pielichowski, K., Janowski, B.: Semi-interpenetrating polymer networks of polyurethane and poly(vinyl alcohol). Thermal stability assessment. J. Therm. Anal. Calorim. 80, 147–151 (2005)

    Google Scholar 

  33. Vieira, E.F.S., Cestari, A.R., Zawadzki, S.F., Rocha, S.M.: Evaluation of tg data of htpb-based polyurethanes. J. Therm. Anal. Calorim. 75(2), 501–506 (2004)

    Google Scholar 

  34. Starnes Jr., W.H.: Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Progr. Polym. Sci. 27, 2133–2170 (2002)

    Google Scholar 

  35. Merlin, L.M., Sivasankar, B.: Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45, 165–170 (2009)

    Google Scholar 

  36. Mathew, A.P., Packirisamy, S., Thomas, S.: Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis. Polym. Degrad. Stab. 72, 423–439 (2001)

    Google Scholar 

  37. Boonpoo-nga, R., Sriring, M., Nijpanich, S., Wongbuth, L., Martwiset, S.: Semi-interpenetrating polymer networks of poly(4-styrenesulfonic acid) and poly(acrylic acid) for fuel cell applications. KKU Res. J. 16(7), 757–763 (2011)

    Google Scholar 

  38. Huang, C.-C., Yang, M.-S., Liang, M.: Synthesis of new thermosetting poly(2,6-dimethyl-1,4-phenylene oxide)s containing epoxide pendant groups. J. Polym. Sci. A Polym. Chem. 44, 5875–5886 (2006)

    Google Scholar 

  39. Takayama, S., Mathubara, T., Arai, T., Takedo, K.: Rearrangement of the main-chain and subsequent thermal degradation of polyphenylene-ether. Polym. Degrad. Stab. 50(3), 277–284 (1995)

    Google Scholar 

  40. Pearce, E.M., Liepins, R.: Flame retardants. Environ. Health Perspect. 11, 59–70 (1975)

    Google Scholar 

  41. Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B Eng. 43, 2762–2771 (2012)

    Google Scholar 

  42. Shih, Y.F.: Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater. Sci. Eng. A 445–446, 289–295 (2007)

    Google Scholar 

  43. De Rosa, I.M., Santulli, C., Sarasini, F.: Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. 31, 2397–2405 (2010)

    Google Scholar 

  44. Azwa, Z.N., Yousif, B.F.: Characteristics of kenaf/epoxy composites subjected to thermal degradation. Polym. Degrad. Stab. 98, 2752–2759 (2013)

    Google Scholar 

  45. Manfredi, L.B., Rodríguez, E.S., Przybylak, M.W., Vázquez, A.: Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym. Degrad. Stab. 91, 255–261 (2006)

    Google Scholar 

  46. Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589–6598 (2013)

    Google Scholar 

  47. Singha, A.S., Rana, A.K., Jarial, R.K.: Mechanical, dielectric and thermal properties of Grewia optiva fibers reinforced unsaturated polyester matrix based composites. Mater. Des. 51, 924–934 (2013)

    Google Scholar 

  48. Hameed, N., Sreekumar, P.A., Francis, B., Yang, W., Thomas, S.: Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. A Appl. Sci. Manuf. 38, 2422–2432 (2007)

    Google Scholar 

  49. Alonso, M.V., Auad, M.L., Nutt, S.: Short-fiber-reinforced epoxy foams. Compos. A Appl. Sci. Manuf. 37, 1952–1960 (2006)

    Google Scholar 

  50. Daoa, D.Q., Luche, J., Richard, F., Rogaume, T., Bourhy-Weber, C., Ruban, S.: Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter. Int. J. Hydrogen Energy 38, 8167–8178 (2013)

    Google Scholar 

  51. Régnier, N., Fontaine, S.: Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG. J. Therm. Anal. Calorim. 64, 789–799 (2001)

    Google Scholar 

  52. Pervin, F., Zhou, Y., Rangari, V.K., Jeelani, S.: Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater. Sci. Eng. A 405, 246–253 (2005)

    Google Scholar 

  53. Seki, Y., Sever, K., Sarikanat, M., Sakarya, A., Elik, E.: Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Compos. B Eng. 45, 1534–1540 (2013)

    Google Scholar 

  54. Sun, Y., Zhang, Z., Moon, K.S., Wong, C.P.: Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B Polym. Phys. 42, 3849–3858 (2004)

    Google Scholar 

  55. Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)

    Google Scholar 

  56. Preghenella, M., Pegoretti, A., Migliaresi, C.: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer 46, 12065–12072 (2005)

    Google Scholar 

  57. Lakshmi, M.S., Narmadha, B., Reddy, B.S.R.: Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 93, 20125–45213 (2008)

    Google Scholar 

  58. Saad, G.R., Elhamid, E.E.A., Elmenyawy, S.A.: Dynamic cure kinetics and thermal degradation of brominated epoxy resin-organoclay based nanocomposites. Thermochim. Acta 524, 186–193 (2011)

    Google Scholar 

  59. Narteh, A.T., Hosur, M., Triggs, E., Jeelani, S.: Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. Polym. Degrad. Stab. 98, 759–770 (2013)

    Google Scholar 

  60. Brnardic, I., Macan, J., Ivankovic, H., Ivankovic, M.: Thermal degradation kinetics of epoxy/organically modified montmorillonite nanocomposites. J. Appl. Polym. Sci. 107, 1932–1938 (2008)

    Google Scholar 

  61. Carrasco, F., Pages, P.: Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 93, 1000–1007 (2008)

    Google Scholar 

  62. Jiang, W., Chen, S.H., Chen, Y.: Nanocomposites from phenolic resin and various organo-modified montmorillonites: preparation and thermal stability. J. Appl. Polym. Sci. 102, 5336–5343 (2006)

    Google Scholar 

  63. Pranger, L.A., Nunnery, G.A., Tannenbaum, R.: Mechanism of the nanoparticle-catalyzed polymerization of furfuryl alcohol and the thermal and mechanical properties of the resulting nanocomposites. Compos. B Eng. 43, 1139–1146 (2012)

    Google Scholar 

  64. Zhang, Z., Ye, G., Toghiani, H., Pittman Jr, C.U.: Morphology and thermal stability of novolac phenolic resin/clay nanocomposites prepared via solution high-shear mixing. Macromol. Mater. Eng. 295, 923–933 (2010)

    Google Scholar 

  65. Ingram, S.E., Liggat, J.J., Pethrick, R.A.: Properties of epoxy nanoclay system based on diaminodiphenyl sulfone and diglycidyl ether of bisphenol F: influence of post cure and structure of amine and epoxy. Polym. Int. 56, 1029–1034 (2007)

    Google Scholar 

  66. Park, J., Jana, S.C.: Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy-clay systems. Polymer 45, 7673–7679 (2004)

    Google Scholar 

  67. Arasa, M., Pethrick, R.A., Mantecón, A., Serra, A.: New thermosetting nanocomposites prepared from diglycidyl ether of bisphenol and γ-valerolactone initiated by rare earth triflate initiators. Eur. Polym. J. 46, 5–13 (2010)

    Google Scholar 

  68. Chongqing, Y., Shunping, L., Jianying, Y., Yong, N., Congcong, F., Hua, W., Yufeng, C.: Preparation and thermal properties of phenolic resin/organic expanded vermiculite nanocomposites. Adv. Chem. Lett. 1, 51–55 (2013)

    Google Scholar 

  69. Nohales, A., Solar, L., Porcar, I., Vallo, C.I., Gómez, C.M.: Morphology, flexural, and thermal properties of sepiolite modified epoxy resins with different curing agents. Eur. Polym. J. 42, 3093–3101 (2006)

    Google Scholar 

  70. Zhang, Y., Shen, J., Li, Q., Pang, L., Zhang, Q., Xu, Z., Yeung, K.W.K., Yi, C.: Synthesis and characterization of novel hyperbranched polyimides/attapulgite nanocomposites. Compos. A Appl. Sci. Manuf. 55, 161–168 (2013)

    Google Scholar 

  71. Ollier, R., Rodriguez, E., Alvarez, V.: Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos. A Appl. Sci. Manuf. 48, 137–143 (2013)

    Google Scholar 

  72. Zabihi, O., Ghasemlou, S.: Nano-CuO/epoxy composites: thermal characterization and thermo-oxidative degradation. Int. J. Polym. Anal. Charact. 17, 108–121 (2012)

    Google Scholar 

  73. Guo, Z., Liang, X., Pereira, T., Scaffaro, R., Hahn, H.T.: CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos. Sci. Technol. 67, 2036–2044 (2007)

    Google Scholar 

  74. Guo, Z., Lei, K., Li, Y., Ng, H.W., Prikhodko, S., Hahn, H.T.: Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. Compos. Sci. Technol. 68, 1513–1520 (2008)

    Google Scholar 

  75. Zabihi, O., Hooshafza, A., Moztarzadeh, F., Payravand, H., Afshar, A., Alizadeh, R.: Isothermal curing behavior and thermo-physical properties of epoxy-based thermoset nanocomposites reinforced with Fe2O3 nanoparticles. Thermochim. Acta 527, 190–198 (2012)

    Google Scholar 

  76. Asiri, A.M., Hussein, M.A., Abu-Zied, B.M., Hermas, A.E.A.: Effect of NiLaxFe2-xO4 nanoparticles on the thermal and coating properties of epoxy resin composites. Compos. B Eng. 51, 11–18 (2013)

    Google Scholar 

  77. Chatterjee, A., Islam, M.S.: Fabrication and characterization of TiO2–epoxy nanocomposite. Mater. Sci. Eng. A 487, 574–585 (2008)

    Google Scholar 

  78. Omrani, A., Afsar, S., Safarpour, M.A.: Thermoset nanocomposites using hybrid nano TiO2–SiO2. Mater. Chem. Phys. 122, 343–349 (2010)

    Google Scholar 

  79. Guigo, N., Mija, A., Zavaglia, R., Vincent, L., Sbirrazzuoli, N.: New insights on the thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl alcohol)/SiO2 hybrid materials. Polym. Degrad. Stab. 94, 908–913 (2009)

    Google Scholar 

  80. Schutz, M.R., Sattler, K., Deeken, S., Klein, O., Adasch, V., Liebscher, C.H., Glatzel, U., Senker, J., Breu, J.: Improvement of thermal and mechanical properties of a phenolic resin nanocomposite by in situ formation of silsesquioxanes from a molecular precursor. J. Appl. Polym. Sci. 117, 2272–2277 (2010)

    Google Scholar 

  81. Nagendiran, S., Alagar, M., Hamerton, I.: Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric and morphological properties. Acta Mater. 58, 3345–3356 (2010)

    Google Scholar 

  82. Wang, Y., Liu, F., Xue, X.: Synthesis and characterization of UV-cured epoxy acrylate/POSS nanocomposites. Prog. Org. Coat. 76, 863–869 (2013)

    Google Scholar 

  83. Zhang, Y., Lee, S., Yoonessi, M., Liang, K., Pittman, C.U.: Phenolic resin-trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47, 2984–2996 (2006)

    Google Scholar 

  84. Aflori, M., Simionescu, B., Bordianu, I.-E., Sacarescu, L., Varganici, C.-D., Doroftei, F., Nicolescu, A., Olaru, M.: Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Mater. Sci. Eng. B Solid–State Mater. Adv. Technol. 178(19), 1339–1346 (2013)

    Google Scholar 

  85. Bazzar, M., Ghaemy, M.: 1,2,4-Triazole and quinoxaline based polyimide reinforced with neat and epoxide-end capped modified SiC nanoparticles: Study thermal, mechanical and photophysical properties. Compos. Sci. Technol. 86, 101–108 (2013)

    Google Scholar 

  86. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41, 1345–1367 (2010)

    Google Scholar 

  87. Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 452453, 657–664 (2007)

    Google Scholar 

  88. Ma, P.C., Kim, J.K., Tang, B.Z.: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos. Sci. Technol. 67, 2965–2972 (2007)

    Google Scholar 

  89. Ciecierska, E., Boczkowska, A., Kurzydlowski, K.J., Rosca, I.D., Hoa, S.V.: The effect of carbon nanotubes on epoxy matrix nanocomposites. J. Therm. Anal. Calorim. 111, 1019–1024 (2013)

    Google Scholar 

  90. Loosa, M.R., Coelhoa, L.A.F., Pezzina, S.H., Amicob, S.C.: Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mater. Res. 11, 347–352 (2008)

    Google Scholar 

  91. Yang, K., Gu, M.: The Effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym. Eng. Sci. 49, 2158–2167 (2009)

    Google Scholar 

  92. Kuan, C.F., Chen, W.J., Li, Y.L., Chen, C.H., Kuan, H.C., Chiang, C.L.: Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J. Phys. Chem. Sol. 71, 539–543 (2010)

    Google Scholar 

  93. Han, C., Gu, A., Liang, G., Yuan, L.: Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property. Compos. A Appl. Sci. Manuf. 41, 1321–1328 (2010)

    Google Scholar 

  94. Cui, J., Yan, Y., Liu, J., Wu, Q.: Phenolic resin-MWNT nanocomposites prepared through an in situ polymerization method. Polym. J. 40, 1067–1073 (2008)

    Google Scholar 

  95. Liu, L., Ye, Z.: Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polym. Degrad. Stab. 94, 1972–1978 (2009)

    Google Scholar 

  96. Bafekrpour, E., Simon, G.P., Naebe, M., Habsuda, J., Yang, C., Fox, B.: Preparation and properties of composition-controlled carbon nanofiber/phenolic nanocomposites. Compos. B Eng. 52, 120–126 (2013)

    Google Scholar 

  97. Faraz, M.I., Bhowmik, S., De Ruijter, C., Laoutid, F., Benedictus, R., Dubois, Ph, Page, J.V.S., Jeson, S.: Thermal, morphological, and mechanical characterization of novel carbon nanofiber-filled bismaleimide composites. J. Appl. Polym. Sci. 117, 2159–2167 (2010)

    Google Scholar 

  98. Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Google Scholar 

  99. Zhang, X., Alloul, O., He, Q., Zhu, J., Verde, M.J., Li, Y., Wei, S., Guo, Z.: Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54, 3594–3604 (2013)

    Google Scholar 

  100. Wang, X., Jin, J., Song, M.: An investigation of the mechanism of graphene toughening epoxy. Carbon 65, 324–333 (2013)

    Google Scholar 

  101. Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T.: In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47, 850–856 (2013)

    Google Scholar 

  102. Lin, Q., Qu, L., Lü, Q., Fang, C.: Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites. Polym. Test. 32, 330–337 (2013)

    Google Scholar 

  103. Lungu, A., Florea, N.M., Iovu, H.: Dimethacrylic/epoxy interpenetrating polymer networks including octafunctional POSS. Polymer 53, 300–307 (2012)

    Google Scholar 

  104. Jia, Q.M., Zheng, M.S., Chen, H.X., Shen, R.J.: Morphologies and properties of polyurethane/epoxy resin interpenetrating network nanocomposites modified with organoclay. Mater. Lett. 60, 1306–1309 (2006)

    Google Scholar 

  105. Chen, S., Wang, Q., Wang, T., Pei, X.: Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater. Des. 32, 803–807 (2011)

    Google Scholar 

  106. Chen, S., Wang, Q., Wang, T.: Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater. Des. 38, 47–52 (2012)

    Google Scholar 

  107. Wu, X., He, G., Gu, S., Hu, Z., Yao, P.: Novel interpenetrating polymer network sulfonated poly(phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cell. J. Membr. Sci. 295, 80–87 (2007)

    Google Scholar 

  108. Banerjee, S., Ray, S., Maiti, S., Sen, K.K., Bhattacharyya, U.K., Kaity, S., Ghosh, A.: Interpenetrating polymer network (IPN): a novel biomaterial. Int. J. Appl. Pharm. 2(1), 28–34 (2010)

    Google Scholar 

  109. Patel, J.M., Savani, H.D., Turakhiya, J.M., Akbari, B.V., Goyani, M., Raj, H.A.: Interpenetrating polymer network: a novel approach for controlled drug delivery. UJP 1(1), 1–11 (2012)

    Google Scholar 

  110. Shivashankar, M., Mandal, B.K.: A review on interpenetrating polymer network. Int. J. Phram. Phram. Sci. 4(5), 1–7 (2012)

    Google Scholar 

  111. Paduraru, O.M., Ciolacu, D., Darie, R.N., Vasile, C.: Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater. Sci. Eng. C 32, 2508–2515 (2012)

    Google Scholar 

  112. Varganici, C.-D., Paduraru, O.M., Rosu, L., Rosu, D., Simionescu, B.C.: Thermal stability of some cryogels based on poly(vinyl alcohol) and cellulose. J. Anal. Appl. Pyrol. 104, 77–83 (2013)

    Google Scholar 

  113. Gibson, S.L., Walls, H.J., Kennedy, S.B., Welsh, E.R.: Reaction kinetics and gel properties of blocked diisocyanate crosslinked chitosan hydrogels. Carbohydr. Polym. 54, 193–199 (2003)

    Google Scholar 

  114. Zeng, M., Fang, Z., Xu, C.: Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 230, 175–181 (2004)

    Google Scholar 

  115. Zeng, M., Fang, Z.: Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. J. Membr. Sci. 245, 95–102 (2004)

    Google Scholar 

  116. Welsh, E.R., Schauer, C.L., Qadri, S.B., Price, R.R.: Chitosan crosslinking with a water-soluble, blocked diisocyanate. 1. Solid state. Biomacromolecules 3, 1370–1374 (2002)

    Google Scholar 

  117. Rodkate, N., Wichai, U., Boontha, B., Rutnakornpituk, M.: Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydr. Polym. 81, 617–625 (2010)

    Google Scholar 

  118. Dinu, M.V., Cazacu, M., Dragan, E.S.: Mechanical, thermal and surface properties of polyacrylamide/dextran semi-interpenetrating network hydrogels tuned by the synthesis temperature. Cent. Eur. J. Chem. 11(2), 248–258 (2013)

    Google Scholar 

  119. Grishchuk, S., Karger-Kocsis, J.: Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polym. Lett. 5(1), 2–11 (2011)

    Google Scholar 

  120. Wang, R., Schuman, T.P.: Vegetable oil-derived epoxy monomers and polymer blends: a comparative study with review. Express Polym. Lett. 7(3), 272–292 (2013)

    Google Scholar 

  121. Mustata, F., Tudorachi, N., Rosu, D.: Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Compos. B Eng. 42, 1803–1812 (2011)

    Google Scholar 

  122. Harrats, C., Mekhilef, N.: Cocontinuous phase morphologies: predictions, generation and practical applications. In: Harrats, C., Thomas, S., Groeninckx, G. (eds.) Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces, p. 124. Taylor & Francis Group, USA (2006)

    Google Scholar 

Download references

Acknowledgments

Authors of this chapter acknowledge a grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-II-ID-PCE-2011-3-0187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Rosu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosu, D., Varganici, CD., Rosu, L., Mocanu (Paduraru), O.M. (2015). Thermal Degradation of Thermosetting Blends. In: Visakh, P., Arao, Y. (eds) Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03464-5_2

Download citation

Publish with us

Policies and ethics