Skip to main content

Part of the book series: Compact Textbooks in Mathematics ((CTM))

  • 2731 Accesses

Abstract

We have shown in Proposition 2.6 that the infinite sequence \((\{n\boldsymbol{\alpha }\})_{n\in \mathbb{N}_{0}}\) is uniformly distributed modulo one under a certain condition on the vector \(\boldsymbol{\alpha }\in \mathbb{R}^{s}\). In this chapter we consider “finite” versions of such sequences which are referred to as lattice point sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Bakhvalov, N.S.: Approximate computation of multiple integrals. Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 4, 3–18 (1959). (Russian)

    Google Scholar 

  2. Bykovskii, V.A.: The discrepancy of the Korobov lattice points. Izv. Math. 76, 446–465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dick, J., Pillichshammer, F.: Discrepancy theory and quasi-Monte Carlo integration. In: Chen, W.W.L., Srivastav, A., Travaglini, G. (eds.) Panorama of Discrepancy Theory, pp. 509–585. Springer (2014)

    Google Scholar 

  4. Dick, J., Nuyens, D., Pillichshammer, F.: Lattice rules for nonperiodic smooth integrands. Numer. Math. 126, 259–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hickernell, F.J.: Obtaining O(n −2+ε) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)

    Chapter  Google Scholar 

  6. Hickernell, F.J., Woźniakowski, H.: Tractability of multivariate integration for periodic functions. J. Complex. 17, 660–682 (2001)

    Article  MATH  Google Scholar 

  7. Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions. Math. Comput. 83, 2853–2863 (2014)

    Article  MATH  Google Scholar 

  8. Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions II. J. Complex. 30, 117–143 (2014)

    Article  MATH  Google Scholar 

  9. Hinrichs, A., Novak, E., Woźniakowski, H.: The curse of dimensionality for monotone and convex functions of many variables. J. Approx. Theory 27, 955–965 (2011)

    Article  Google Scholar 

  10. Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin/Heidelberg/New York (1981)

    MATH  Google Scholar 

  11. Joe, S.: Component by component construction of rank-1 lattice rules having O(n −1(ln(n))d) star-discrepancy. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 293–298. Springer, Berlin/Heidelberg/New York (2004)

    Chapter  Google Scholar 

  12. Korobov, N.M.: Number-theoretic methods in approximate analysis. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1963). (Russian)

    MATH  Google Scholar 

  13. Larcher, G.: On the distribution of sequences connected with good lattice points. Monatsh. Math. 101, 135–150 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Larcher, G.: A best lower bound for good lattice points. Monatsh. Math. 104, 45–51 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. L’Ecuyer, P., Munger, D.: Lattice builder: a general software tool for constructing rank-1 lattice rules (submitted for publication)

    Google Scholar 

  16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Number 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Google Scholar 

  17. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. EMS, Zurich (2008)

    Book  Google Scholar 

  18. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. EMS, Zurich (2010)

    Book  MATH  Google Scholar 

  19. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume III: Standard Information for Operators. EMS, Zurich (2012)

    Book  MATH  Google Scholar 

  20. Nuyens, D.: Fast construction of good lattice rules. PhD thesis, Departement Computerwetenschappen, Katholieke Universiteit Leuven (2007)

    Google Scholar 

  21. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 373–387. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, New York/Oxford (1994)

    MATH  Google Scholar 

  24. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comput. 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complex. 17, 697–721 (2001)

    Article  MATH  Google Scholar 

  26. Temlyakov, V.N.: Cubature formulas, discrepancy, and nonlinear approximation. J. Complex. 19, 352–391 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leobacher, G., Pillichshammer, F. (2014). Lattice Point Sets. In: Introduction to Quasi-Monte Carlo Integration and Applications. Compact Textbooks in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-03425-6_4

Download citation

Publish with us

Policies and ethics