Skip to main content

Fiber Reinforced SCC

  • Chapter
  • First Online:
Mechanical Properties of Self-Compacting Concrete

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 14))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Groth, P., Nemegeer, D.: The use of steel fibers in self-compacting concrete. In: Proceedings of the 1st International Rilem Symposium on Self-Compacting Concrete, pp. 497–507

    Google Scholar 

  2. Carlsward, C., Emborg, M.: Shrinkage cracking of steel fiber reinforced self-compacting concrete overlays – tests methods and theoretical modelling. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 793–798, 3–5 Sept 2007. RILEM Publications, Gent (2007)

    Google Scholar 

  3. Dhonde, H.B., Mo, Y.L., Hsu, T.T.C., Vogel, J.: Fresh and hardened state properties of self-consolidating fiber-reinforced concrete. ACI Mater. J. 104, 491–500 (2007)

    Google Scholar 

  4. Ferrara, L., Meda, A.: Relationships between fiber distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater. Struct. 39, 411–420 (2006)

    Google Scholar 

  5. Grunewald, S., Performance based design of self-compacting steel fiber reinforced concrete. Ph.D. Thesis, Delft University of Technology (2004)

    Google Scholar 

  6. di Prisco, C., di Prisco, M., Mauri, M., Scola, M.: A new design for stabilizing round slopes. In: Proceedings of the Fib Conference, Naples, June 2006 (paper 823-CD-Rom)

    Google Scholar 

  7. Barragàn, B., Zerbino, R., Gettu, R., Soriano, M., de la Cruz, C., Giaccio, G., Bravo, M.: Development and application of steel fiber reinforced self-compacting concrete. In: Di Prisco, M. et al. (eds.) BEFIB 2004, Proceedings of the 6th International RILEM Symposium, Varenna, Italy, pp. 455–464, 20–22 Sept 2004. RILEM Publications, Varenna (2004)

    Google Scholar 

  8. Borralleras, P., Barragàn, B., Gettu, R.: Comparison for durability parameters between conventional concrete standard SCC and steel fiber reinforced SCC for construction of thin elements. Part 2: thin concrete walls application. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 1092–1098, 3–5 Sept 2007. RILEM Publications, Gent (2007)

    Google Scholar 

  9. Romano, G.Q., Silva, F.A., Toledo Filho, R.D., Fairbairn, E.M.R., Battista, R.C.: Mechanical characterization of steel fiber reinforced self-compacting refractory concrete. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 881–886, 3–5 Sept 2007. RILEM Publications, Gent (2007)

    Google Scholar 

  10. Pereira, E.N.B, Barros, J.A.O., Ribeiro, A.F., Camoes, A.: Post-cracking behaviour of self-compacting steel fiber reinforced concrete. In: Di Prisco, M., et al. (eds.) BEFIB 2004, Proceedings of the 6th International RILEM Symposium, Varenna, Italy, pp. 1371–1380, 20–22 Sept 2004. RILEM Publications, Varenna (2004)

    Google Scholar 

  11. Bigas, J.P., Pellerin, B., Deschryver, F., Massinari, P., Plizzari, G.: Synthetic macro-fibers reinforced self-compacting concrete for lightweight precast elements. A case study. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 1013–1018, 3–5 Sept 2007. RILEM Publications, Gent (2007)

    Google Scholar 

  12. Nakamura, S., van Mier, J.G.M., Masuda, Y.: Self compactability of hybrid fiber concrete containing PVA fibers. In: Di Prisco, M. et al. (eds.) BEFIB 2004, Proceedings of the 6th International RILEM Symposium, Varenna, Italy, pp. 527–538, 20–22 Sept 2004. RILEM Publications, Varenna (2004)

    Google Scholar 

  13. Mantegazza, G., Gatti, A.: Role of polycarboxilate superplasticizer and hybrid polymeric fibers in self-compacting fiber-reinforced concrete. ACI SP, pp. 69–86

    Google Scholar 

  14. Krage, G., Wallevik, O.H.: Rheology of synthetic fiber reinforced SCC. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 347–352, 3–5 Sept 2007. RELIM Publications, Gent (2007)

    Google Scholar 

  15. He, X., Yang, Q.: Research on impact properties of flexible fiber reinforced self-compacting concrete in middle-low intensity. In: Shi, C., et al. (eds.) Proceedings 2nd International Symposium on the Design Performance and Use of SCC, SCC2009, Beijing, pp. 577–585, 5–7 June 2009. RILEM Publications, Beijing (2009)

    Google Scholar 

  16. Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S.H., Hosseinpour, I.: The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr. Build. Mater. 25, 351–358 (2011)

    Article  Google Scholar 

  17. Suresh Babu, T., Seshagiri Rao, M.V., Rama Seshu, D.: A study on the flexural behaviour of glass fiber reinforced self-compacting concrete. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, pp. 793–802, 17–19 Sept 2008. RILEM Publications, Chennai (2008)

    Google Scholar 

  18. Carneiro, V.L., Lima, P.R.L., Leite, M.B.: “Avaliaçao das propriedades fisicas e mecânicas de pastas compósitas auto-compactavéis reforçadas com fibras curtas de coco”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1–2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. 83 (in Portuguese)

    Google Scholar 

  19. Hernandex, F.J.R., Navarro, J.F.V., del Valle, A.J.R. and Cosp. J.P..: “Hormigón Autocompactante renforzado con fibras de sisal”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1-2 July 2010, Guimarães, Portugal, Multicomp, 9 pp. (CD-ROM), abstract p. 115 (in Spanish)

    Google Scholar 

  20. Jiang, Z., Banthia, N., Delbar, S.: Effect of cellulose fibers on properties of self-compacting concrete with high volume mineral admixtures. In: Shi, C., et al. (eds.) Proceedings 2nd International Symposium on the Design Performance and Use of SCC, SCC2009, Beijing, pp. 495–505, 5–7 June 2009. RILEM Publications, Beijing (2009)

    Google Scholar 

  21. Ferrara, L.: On the use of viscosity enhancing admixtures to improve the homogeneity of fiber distribution in fiber reinforced concretes. In: Brandt et al. (eds.) Proceedings of the International Symposium “Brittle Matrix Composites 7”, A.M., Warsaw, pp. 287–300, 13–15 Oct 2003. Zturek RSI and Woodhead Publishers, Warsaw (2003)

    Google Scholar 

  22. Ozyurt, N., Mason, T.O., Shah, S.P.: Correlation of fiber dispersion, rheology and mechanical performance of FRCs. Cement Concr. Compos. 29, 70–79 (2007)

    Article  Google Scholar 

  23. Bayasi, M.Z., Soroushian, P.: Effect of steel fiber reinforcement on fresh mix properties of concrete. ACI Mater. J. 89(4), 369–374 (1992)

    Google Scholar 

  24. Ozyurt, N., Mason, T.O., Shah, S.P.: Non-destructive monitoring of fiber orientation using AC-IS: an industrial scale application. Cem. Concr. Res. 36, 1653–1660 (2006)

    Article  Google Scholar 

  25. Ferrara, L., Dozio, D., Di Prisco, M.: On the connections between fresh state behavior, fiber dispersion and toughness properties of steel fiber reinforced concrete. In: Naaman, A., Reinhardt, H.W. (eds.) Proceedings of HPFRCC5, Mainz (Germany), pp. 249–258, 13–15 July 2007, RILEM Publications, Mainz (2007)

    Google Scholar 

  26. Stahli, P., van Mier, J.G.M.: Manufacturing, fiber anisotropy and fracture of hybrid fiber concrete. Eng. Fract. Mech. 74, 223–242 (2007)

    Article  Google Scholar 

  27. Stahli, P., Custer, R., van Mier, J.G.M.: On flow properties, fiber distribution, fiber orientation and flexural behaviour of FRC. Mater. Struct. 41, 189–196 (2008)

    Google Scholar 

  28. Ferrara, L., Park, Y.D., Shah, S.P.: Correlation among fresh state behaviour, fiber dispersion and toughness properties of SFRCs. ASCE J. Mater. Civ. Eng. 20, 493–501 (2008)

    Article  Google Scholar 

  29. Ferrara, L., Ozyurt, N., di Prisco, M.: High mechanical performance of fiber reinforced cementitious composites: the role of “casting-flow” induced fiber orientation. Mater. Struct. 44, 109–128 (2011)

    Article  Google Scholar 

  30. Ferrara, L., Di Prisco, M., Lamperti, M.G.L.: Identification of the stress-crack opening behavior of HPFRCC: the role of flow-induced fiber orientation. In: Oh, B.H., et al. (eds.) Proceedings FraMCoS 7, 7th International Conference of Fracture Mechanics of Concrete and Concrete Structures, Jiejiu, South Korea, pp. 1541–1550, 23–28 May 2010

    Google Scholar 

  31. Barnett, S.J., Lataste, J.F., Parry, T., Millard, S.G., Soutsos, M.N.: Assessment of fiber orientation in ultra high performance fiber reinforced concrete and its effect on flexural strength. Mater. Struct. 43, 1009–1023 (2010)

    Article  Google Scholar 

  32. Boulekbache, B., Hamrat, M., Chemrouk, M., Amziane, S.: Flowability of fiber-reoinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater. 24, 1664–1671 (2010)

    Article  Google Scholar 

  33. Boulekbache, B., Hamrat, M., Chemrouk, M., Amziane, S.: Influence of yield stress and compressive strength on direct shear behaviour of steel fiber-reinforced concrete. Constr. Build. Mater. 27, 6–14 (2012)

    Article  Google Scholar 

  34. RILEM TC 174-SCC: “Self-Compacting concrete. State of the art report”, RILEM Report 23, Å. Skarendahl and Ö Petersson eds., 2000, pp. 154 + XI

    Google Scholar 

  35. De Larrard, F.: Concrete mixture proportioning. A scientific approach. E&FN Spoon (1999)

    Google Scholar 

  36. Su, N., Hsu, K.C., Chai, H.W.: A simple mix-design method for self-compacting concrete. Cem. Concr. Res. 31, 1799–1807 (2001)

    Article  Google Scholar 

  37. Brouwers, H.J.H., Radix, H.J.: Self compacting concrete: theoretical and experimental study. Cem. Concr. Res. 35, 2116–2136 (2005)

    Article  Google Scholar 

  38. Domone, P.: Self-compacting concrete: an analysis of 11 years of case studies. Cement Concr. Compos. 28(2006), 197–208 (2006)

    Article  Google Scholar 

  39. Naaman, A.E., Wille, K.: Some correlation between high packing density, ultra-high performance, flow-ability and fiber reinforcement of a concrete matrix. In: BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1–2 July 2010, Guimarães, Portugal, Multicomp, pp. 3–18

    Google Scholar 

  40. Saak, A.W., Jennings, H.M., Shah, S.P.: New methodology for designing self-compacting concrete. ACI Mater. J. 98, 429–439 (2001)

    Google Scholar 

  41. Bui, V.K., Akkaya, J., Shah, S.P.: Rheological model for self-consolidating concrete. ACI Mater. J. 99, 549–559 (2002)

    Google Scholar 

  42. Pereira, E.N.B., Barros, J.A.O., Ribeiro, A.F., Camoes, A.: Post cracking behavior of self-compacting steel fiber reinforced concrete. In: Di Prisco, M., et al. (eds.) Proceedings BEFIB04, Paris, 2004, pp. 1371–1380. RILEM Publications, Paris (2004)

    Google Scholar 

  43. Ferrara, L., Park, Y.D., Shah, S.P.: A method for mix-design of fiber reinforced self-compacting concrete. Cem. Concr. Res. 37, 957–971 (2007)

    Article  Google Scholar 

  44. Yu, A.B., Zou, R.P., Standish, N.: Packing of ternary mixtures of non-spherical particles. J. Am. Ceram. Soc. 75, 265–272 (1992)

    Google Scholar 

  45. Yu, A.B., Standish, N., McLean, A.: Porosity calculation of binary mixtures of non-spherical particles. J. Am. Ceram. Soc. 76, 2813–2816 (1993)

    Article  Google Scholar 

  46. Martinie, L., Rossi, P., Roussel, N.: Rheology of fiber reinforced cementitious materials: classification and prediction. Cem. Concr. Res. 40, 226–234 (2010)

    Article  Google Scholar 

  47. Liao, W.C., Chao, S.H., Naaman, A.E.: Experience with self-consolidating high-performance fiber-reinforced mortar and concrete. In: Aldea, C.M., Ferrara, L. (eds.) Fiber Reinforced Self Consolidating Concrete: Research and Application, ACI-SP 274, 2010, pp. 79–94

    Google Scholar 

  48. Camacho, E., Serna, P.: “Optimización de dosificaciones de hormigón autocompactante de muy alto rendimiento renforzado con fibras híbrido”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1–2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. 41 (in Spanish)

    Google Scholar 

  49. Tattersall, G.H., Banfill, P.F.G.: The rheology of fresh concrete, pp. 356 + XII. Pitman Books Ltd., Boston (1983)

    Google Scholar 

  50. Tattersall, G.H.: Workability and quality control of concrete. E&FN Spon, London (1991)

    Google Scholar 

  51. Assaad, J., Khayat, K., Daczko, J.: Evaluation of static stability of self-consolidating concrete. ACI Mater. J. 101, 207–215 (2004)

    Google Scholar 

  52. Khayat, K., Assaad, J., Daczko, J.: Comparison of field-oriented test method to assess dynamic stability of self-consolidating concrete. ACI Mater. J. 101, 168–176 (2004)

    Google Scholar 

  53. prEN12350-8, Testing fresh concrete – part 8 – Self compacting concrete – slump flow test

    Google Scholar 

  54. prEN12350-9, Testing fresh concrete – part 9 – Self compacting concrete – V-funnel test

    Google Scholar 

  55. prEN12350-10, Testing fresh concrete – part 10 – Self compacting concrete – L-box test

    Google Scholar 

  56. prEN12350-12, Testing fresh concrete – part 12 – Self compacting concrete – J-ring test

    Google Scholar 

  57. Saak, A., Jennings, H., Shah, S.P.: A generalized approach for the determination of yield stress by slump and slump flow. Cem. Concr. Res. 34, 363–371 (2004)

    Article  Google Scholar 

  58. Roussel, N., Coussot, P.: Fifty-cent rheometer for yield stress measurements: from slump to spreading flow. J. Rheol. 49, 705–718 (2005)

    Article  Google Scholar 

  59. Roussel, N.: Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometer results. Mater. Struct. 39, 501–509 (2006)

    Article  Google Scholar 

  60. Wallevik, J.E.: Relationships between Bingham parameters and slump. Cem. Concr. Res. 36, 1214–1221 (2006)

    Article  Google Scholar 

  61. Roussel, N., LeRoy, R.: The Marsh cone: a test or a rheological apparatus. Cem. Concr. Res. 35, 823–830 (2005)

    Article  Google Scholar 

  62. Tregger, N., Ferrara, L., Shah, S.P.: Identifying cement rheological properties from the mini-slump-flow test. ACI Mater. J. 105, 558–566 (2008)

    Google Scholar 

  63. Cremonesi, M., Ferrara, L., Frangi, A.: “Rheological properties of cementitious composites: identification through field tests and Computational Fluid Dynamics modelling”, n BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1-2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. 65

    Google Scholar 

  64. Bouvet, A., Chorbel, E., Bennacer, R.: The mini-conical slump flow test: analysis and numerical study. Cem. Concr. Res. 40, 1517–1523 (2010)

    Article  Google Scholar 

  65. Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosc, F., Deflorenne, F.: Validation of BTRHEOM, the new rheometer for soft to fluid concrete. Mater. Struct. 29, 620–631 (1996)

    Article  Google Scholar 

  66. Domone, P., Yongmo, X., Banfill, P.F.G.: Developments of the two-point workability test for high performance concrete. Mag. Concr. Res. 51, 171–179 (1999)

    Article  Google Scholar 

  67. Wallevik, J.E.: Development of parallel plate based measuring system for the CONTEC viscometer. In: Wallevik, O.H. et al. (eds.) Proceedings of the 3rd International RILEM Symposium on Rheology of Fresh Cementitious Suspensions such as Fresh Concrete, Reykjiavik, pp. 18–24, 19–21 Aug 2009. RILEM Publications, Reykjiavik

    Google Scholar 

  68. Kuder, K.G., Ozyurt, N., Mu, E.B., Shah, S.P.: Rheology of fiber reinforced cementitious materials. Cem. Concr. Res. 37, 191–199 (2007)

    Article  Google Scholar 

  69. El-Dieb, A.S., Reda Taha, M.M.: Flow characteristics and acceptance criteria of fiber-reinforced self-compacted concrete (FR-SCC). Constr. Build. Mater. 27, 585–596 (2012)

    Google Scholar 

  70. Groth, P.: Steel fiber reinforced SCC, Final report of task 6, Brite Euram project (BE 96-3801) – rational production and improved working environment through using SCC

    Google Scholar 

  71. Borralleras, P., Barragàn, B., Gettu, R.: Comparison for durability parameters between conventional concrete standard SCC and Steel Fiber Reinforced SCC for construction of thin elements. Part 1: durability tests. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 1079–1091, 3–5 Sept 2007. RILEM Publications, Gent (2007)

    Google Scholar 

  72. Cheung, A.K.F., Leung, C.K.Y.: Experimental study of the bond between steel reinforcement and self-compacting high strength fiber reinforced cementitious composites. In: Gettu, R. (ed.) Proceedings of the Befib2008, 7th International RILEM Symposium on FRC, Chennai, India, pp. 6673–6678, 17–19 Sept 2008. RILEM Publications, Chennai

    Google Scholar 

  73. Khayat, K.H., Roussel, Y.: Testing and performance of fiber-reinforced, self-consolidating concrete. Mater. Struct. 33, 391–397 (2000)

    Article  Google Scholar 

  74. Ferrara, L., Ozyurt, N.: Mix-design optimization of steel fiber reinforced SCC. In: Shah, S.P. (ed.) Proceedings 3rd North American Conference on SCC, Chicago, 10–12 Nov 2008, CD_Rom, paper n° 1124

    Google Scholar 

  75. Ozyurt, N., Tregger, N., Ferrara, L., Sedan, I., Shah, S.P.: Adapting fresh state properties of fiber reinforced cementitious material for high performance thin-section elements. In: Wallevik, O.H., et al. (eds.) Proceedings Rheo-Iceland 2009, 3rd International RILEM Symposium on Rheology of Cement Suspensions such as Fresh Concrete, pp. 313–321. RILEM Publications (2009)

    Google Scholar 

  76. Marangon, E., Filho, R.D.T.: “Comportamento reológico de concretos auto-adensáveis reforçados comelevadas frações volumétricas de fibras de aço”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1–2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. 109 (in Portuguese)

    Google Scholar 

  77. Ferrara, L., Bamonte, P., Caverzan, A., Musa, A.M., Sanal, I.: An experimental methodology to assess the performance of steel Fiber-Reinforced Self-Compacting Concrete (FR-SCC). In: Studies and Researches - Annual Review of Structural Concrete/Politecnico di Milano and Italcementi, 31, 2011, pp. 155–184. Starrylink publications (2011)

    Google Scholar 

  78. Shen, L., Struble, L., Lange, D.: Modeling static segregation of Self-Consolidating Concrete. ACI Mater. J. 106, 367–374 (2009)

    Google Scholar 

  79. Shen, L., Struble, L., Lange, D.: Modeling dynamic segregation of Self-Consolidating Concrete. ACI Mater. J. 106, 375–380 (2009)

    Google Scholar 

  80. Tregger, N., Ferrara, L., Shah, S.P.: Predicting dynamic segregation resistance of self-consolidating concrete from the slump-flow test. ASTM Int. 7, 1–7 (2010)

    Google Scholar 

  81. Tregger, N., Gregori, A., Ferrara, L., Shah, S.P.: Correlating dynamic segregation of SCC to the slump-flow test. Constr. Build. Mater. 28, 499–505

    Google Scholar 

  82. Kaci, A., Bouras, R., Phan, V.T., Andreani, P.A., Chaouche, M., Brossas, H.: Adhesive and rheological properties of fresh fiber-reinforced mortars. Cem. Concr. Compos. 33, 218–224 (2011)

    Google Scholar 

  83. Chalencon, F, Orgeas, L., Dumont, P.J.J., Foray, G., Cavaillé, J.Y., Maire, E., Rolland du Roscoat, S: Lubricated compression and X-ray microtomography to analyse the rheology of a fiber-reinforced mortar. Rheol. Acta 49, 221–235 (2010)

    Google Scholar 

  84. Ghanbari, A., Karihaloo, B.L.: Prediction of the plastic viscosity of self-compacting steel fiber reinforced concrete. Cem. Concr. Res. 39, 1209–1216 (2009)

    Article  Google Scholar 

  85. van Bui, K., Geiker, M., Shah, S.P.: Rheology of fiber reinforced cementitious materials. In: Naaman, A., Rheinhardt, H.W. (eds.) Proceedings of the HPFRCC4, Paris, 2003, pp. 221–231. RILEM Publications, Paris (2003)

    Google Scholar 

  86. Voigt, T., Van Bui, K., Shah, S.P.: Drying shrinkage of concrete reinforced with fibers and welded-wire fabric. ACI Mater. J. 101, 233–241 (2004)

    Google Scholar 

  87. Vandewalle, L., Heriman, G., van Rickstal F.: Fiber orientation in self-compacting fiber reinforced concrete. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, pp. 719–728, 17–19 Sept 2008. RILEM Publications, Chennai (2008)

    Google Scholar 

  88. Torrijos, M.C., Barragan, B.E., Zerbino, R.L.: Placing conditions, mesostructural characteristics and post-cracking response of fiber reinforced self-compacting concretes. Constr. Build. Mater. 24, 1078–1085 (2010)

    Article  Google Scholar 

  89. Yardimci, M.Y., Baradan, B., Tasdemir, M.A.: Studies on the relation between fiber orientation and flexural performance of SFRSCC. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, pp. 711–718, 17–19 Sept 2008. RILEM Publications, Chennai (2008)

    Google Scholar 

  90. Sanal, I., Ozyurt, N.: Effects of formwork dimensions on the performance of fiber-reinforced cement based materials. In: Proceedings of the 9th International Conference on Advances in Civil Engineering, Trabzon, Turkey, 27–30 Sept 2010

    Google Scholar 

  91. Kooiman, A.G: Modelling steel fiber reinforced concrete for structural design. Ph.D. thesis. Department of Structural and Building Engineering, Delft University of Technology, 2000

    Google Scholar 

  92. Martinie, L.: Comportement rhéologique et mise en œuvre des matériaux cimentaires fibrés. Ph.D. thesis, Universitè Paris Est, 2010, 193 + vi pp

    Google Scholar 

  93. Martinie, L., Roussel, N.: Simple tools for fiber orientation prediction in industrial practice. Cem. Concr. Res. 41, 993–1000 (2011)

    Article  Google Scholar 

  94. Stroeven, P., Shah, S.P.: Use of radiography-image analysis for steel fiber reinforced concrete. In: Swamy, R.N. (ed.) Testing and Test Methods of Fiber Cement Composites, pp. 345–353. Construction Press, Lancaster (1978)

    Google Scholar 

  95. Torrents, J.M., Mason, T.O., Peled, A., Shah, S.P., Garboczi, E.J.: Analysis of the impedance spectra of short conductive fiber-reinforced composites. J. Mater. Sci. 36, 4003–4012 (2001)

    Article  Google Scholar 

  96. Ozyurt, N., Woo, L.Y., Mason, T.O., Shah, S.P.: Monitoring fiber dispersion in fiber reinforced cementitious materials: comparison of AC impedance spectroscopy and image analysis. ACI Mater. J. 103, 340–347 (2006)

    Google Scholar 

  97. Woo, L.Y., Wansom, S., Ozyurt, N., Mu, B., Shah, S.P., Mason, T.O.: Characterizing fiber dispersion in cement composites using AC Impedance Spectrometry. Cement Concr. Compos. 27, 627–636 (2005)

    Article  Google Scholar 

  98. Douglas, J.F., Garboczi, E.J.: Intrinsic viscosity and the polarizability of particles having a wide range of shapes, pp. 2265–2270. Advances in Chemical Physics, XCI, Wiley, New York (1995)

    Google Scholar 

  99. Lataste, J.F., Behloul, M., Breysse, D.: Characterisation of fibers distribution in a steel fiber reinforced concrete with electrical resistivity measurements. NDT and E Int. 41(8), 638–647 (2008)

    Article  Google Scholar 

  100. Van Damme, S., Franchois, A., De Zutter, D., Taerwe, L.: Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE Trans. Geosci. Remote Sens. 42, 2511–2521 (2004)

    Article  Google Scholar 

  101. Faifer, M., Ottoboni, R., Toscani, S., Ferrara, L.: Non-destructive testing of steel fiber reinforced concrete using a magnetic approach. IEEE Trans. Instrum. Meas. 60(5), 1709–1717 (2011)

    Article  Google Scholar 

  102. Ferrara, L., Faifer, M., Toscani, S.: A magnetic method for non-destructive monitoring of fiber dispersion and orientation in Steel Fiber Reinforced Cementitious Composites – part 1: method calibration. Mater. Struct. 45(4), 575–589 (2012)

    Article  Google Scholar 

  103. Ferrara, L., Faifer, M., Muhaxheri, M., Toscani, S.: A magnetic method for non-destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites – part 2: correlation to tensile fracture toughness. Mater. Struct. 45(4), 591–598 (2012)

    Article  Google Scholar 

  104. Felicetti, R., Ferrara L.: The effect of steel fiber on concrete conductivity and its connection to on-site material assessment. In: Gettu, R. (ed.) Proceedings of Befib 2008, 7th International RILEM Symposium on Fiber Reinforced Concrete, Chennai, India, pp. 525–536, 17–19 Sept 2008, RILEM Publications, Chennai

    Google Scholar 

  105. Molins Borrel, C., Martinez Martinez, J.A., Arnaiz Alvaro, N.: “Distribucion de fibras de acero en probetas prismaticas de hormigon”, Proc. IV Congreso Internacional de Estructuras de la Asociación Científico-tecnica del Hormigón Estructural, 2008, Valencia, Espana

    Google Scholar 

  106. Roussel, N., Geiker, M., Dufour, F., Thrane, L.N., Szabo, P.: Computational modeling of concrete flow: general overview. Cem. Concr. Res. 37, 1298–1307 (2007)

    Article  Google Scholar 

  107. Dufour, F., Pijaudier-Cabot, G.: Numerical modeling of concrete flow: homogeneous approach. Int. J. Numer. Anal. Methods Geomech. 29, 395–416 (2005)

    Article  MATH  Google Scholar 

  108. Cremonesi, M., Ferrara, L., Frangi, A., Perego, U.: Simulation of the flow of fresh cementitious suspensions by a Lagrangian Finite Element approach. J. Non-Netwonian Fluid Mech. 165, 1555–1563 (2010)

    Article  MATH  Google Scholar 

  109. Gram, A., Silfwerbrand, J.: Numerical simulation of fresh SCC flow: applications. Mater. Struct. 9 (2010) doi:10.1617/s11527-010-9666-9

  110. Kulesagaram, S., Karihaloo, B., Ghanbari, A.: Modelling the flow of self-compacting concrete. Int. J. Numer. Anal. Methods Geomech. 35, 713–723 (2011)

    Article  Google Scholar 

  111. Roussel, N., Staquet, S., D’Aloia SCchwartzentruber, L., Le Roy, R., Toutlemonde, F.: SCC casting prediction for the realization of prototype VHPC-precambered composite beams. Mater. Struct. 40, 877–887 (2007)

    Google Scholar 

  112. Petrie, C.J.S.: The rheology of fiber suspensions. J. Non-Netwonian Fluid Mech. 87, 369–402 (1999)

    Article  MATH  Google Scholar 

  113. Moses, K.B., Advani, S.G., Rheinhardt, A.: Investigation of fiber motion near solid boundaries in single shear flow. Rheol. Acta 40, 296–306 (2001)

    Article  Google Scholar 

  114. Holm, R., Soderberg, D.: Shear influence on fiber orientation. Rheol. Acta 46, 721–729 (2007)

    Article  Google Scholar 

  115. Gunez, D.Z., Scirocco, R., Mewis, J., Vermart, J.: Flow induiced orientationj of non-spherical particles: effect of aspect ratio and medium rheology. J. Non-Newtonian Fluid Mech. 155, 39–50 (2008)

    Article  Google Scholar 

  116. Ferec, J., Ausias, G., Heuzey, M.C., Carreau, P.J.: Modeling fiber interactions in semiconcentrated fiber suspensions. J. Rheol. 53, 49–72 (2009)

    Article  Google Scholar 

  117. Keshtkar, M., Heuzey, M.C., Carreau, P.J.: Rheological behaviour of fiber filled model suspensions: effect of fiber flexibility. J. Rheol. 53, 631–650 (2009)

    Article  Google Scholar 

  118. Ma, W.K.A., Chinesta, F., Ammar, A., Mackley, M.R.: Rheological modeling of carbon nanotube aggregate suspensions. J. Rheol. 52, 1311–1330 (2008)

    Article  Google Scholar 

  119. Patankar, N.A., Joseph, D.D.: Modelling and numerical simulation of particulate flow by Eulerian Lagrangian approach. Int. J. Multiph. Flow 27, 1659–1684 (2001)

    Article  MATH  Google Scholar 

  120. Patankar, N.A., Joseph, D.D.: Lagrangian numerical simulation of particulate flow. Int. J. Multiph. Flow 27, 1685–1706 (2001)

    Article  MATH  Google Scholar 

  121. Martinie, L., Roussel, N.: Fiber reinforced cementitious materials: from intrinsic isotropic behavior to fiber alignment. In: Khayat, K.H., Feys, D., (eds.) Design, Production and Placement of Self-Consolidating Concrete, Proceedings of SCC2010, 6th International RILEM Symposium on Self-Compacting Concrete and 4th North American Conference on the Design and Use of SCC, Montreal, Canada, pp. 407–416, 26–29 Sept 2010

    Google Scholar 

  122. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102, 161–179 (1922)

    Article  Google Scholar 

  123. Ferrara, L., Tregger, N., Shah, S.P.: Flow-induced fiber orientation in SCSFRC: monitoring and prediction. In: Khayat, K.H., Feys, D. (eds.) Design, Production and Placement of Self-Consolidating Concrete, Proceedings of SCC2010, 6th International RILEM Symposium on Self-Compacting Concrete and 4th North American Conference on the Design and Use of SCC, Montreal, Canada, pp. 417–428, 26–29 Sept 2010

    Google Scholar 

  124. Mechtcherine, V, Shyshko, S., Simulating the behaviour of fresh concrete using distinct element method. In: De Schutter, G. (ed.) Proceedings 5th International RILEM Symposium on Self Compacting Concrete, Ghent, Belgium, pp. 467–472, 3–5 Sept 2007. RILEM Publications, Ghent (2007)

    Google Scholar 

  125. Mechtcherine, V, Shyshko, S.: Self-compacting concrete simulation using distinct element method. In: Wallevik, O.H., et al. (eds.) Proceedings 3rd International RILEM Symposium of Rheology of Cement suspensions, Reykjavik, Iceland, pp. 171–179, 19–21 Aug 2009. RILEM Publications, sarl, Reykjavik (2009)

    Google Scholar 

  126. Mechtcherine, V, Shyshko, S.: Continuous numerical modelling of concrete from fresh state to hardened state. In: Proceedings of the 16th Building Material Congress Ibausil, Weimar, vol. 2, pp. 165–172 (2006)

    Google Scholar 

  127. Mechtcherine, V, Shyshko, S., Simulating the workability of fresh concrete. In: Proceedings of the International RILEM Symposium on Concrete Modelling, CONMOD 08, Delft, pp. 173–181. RILEM Publications, s.a.r.l. (2008)

    Google Scholar 

  128. Mechtcherine, V., Shyshko, S.: Virtual concrete laboratory – Continuous numerical simulation of concrete behaviour from fresh to hardened state. In: Grosse, U. (ed.) Advances in Construction Materials, Berlin-Heidelberg, pp. 479–488. Springer-Verlag, Berlin (2007)

    Google Scholar 

  129. Ferrara, L., Shyshko, S., Mechtcherine, V.: Predicting the flow-induced fiber dispersion and orientation in self-consolidating concrete by distinct element method. Submitted for presentation to BEFIB 2012

    Google Scholar 

  130. Laranjeira, F. Aguado, A., Molins, C., Grunewald, S, Walraven, J and Cavalaro, S.: Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem. Concr. Res. 42, 752–768 (2012)

    Google Scholar 

  131. Armelin. H.S., Banthia, N.: Predicting the flexural post-cracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Mater. J. 94, 18–31 (1997)

    Google Scholar 

  132. Jones, P.A., Austin, S.A., Robis, P.J.: Predicting the flexural load-deflection response of steel fiber reinforced concrete from strain, crack-width, fiber pull-out and distribution data. Mater. Struct. 41, 449–463 (2008)

    Article  Google Scholar 

  133. Cunha, V.M.C.F., Barros, J.A.O., Sena-Cruz, J.M.: Pull.out behavior of steel fibers in self-compacting concrete. ASCE J. Mater. Civ. Eng. 22, 1–9 (2010)

    Article  Google Scholar 

  134. Laranjeira de Oliveira, F.: Design-oriented constitutive model for steel fiber reinforced concrete. Ph.D. thesis, Universitat Politecnica de Catalunya, 318 + VI pp (2010)

    Google Scholar 

  135. Laranjeira, F., Molins, C., Aguado, A.: Predicting the pullout response of inclined hooked steel fibers. Cem. Concr. Res. 40, 1471–1487 (2010)

    Article  Google Scholar 

  136. Laranjeira, F., Aguado, A., Molins, C.: Predicting the pullout response of inclined straight steel fibers. Mater. Struct. 43, 875–895 (2010)

    Article  Google Scholar 

  137. Laranjeira, F., Grunewald, S., Walraven, J., Blom, C., Molins, C., Aguado, A.: Characterization of the orientation profile of steel fiber reinforced concrete. Mater. Struct. 44, 1093–1111 (2011)

    Article  Google Scholar 

  138. fib Model Code 2010, 1st draft, March 2010, 1st vol., pp. 292 + xx, 2nd vol., pp. 288 + xviii

    Google Scholar 

  139. Balaguru, P. N., Shah. S.P.: Fiber reinforced cement composites, pp. 530. Mc Graw Hill, Singapore New York (1992)

    Google Scholar 

  140. Aoude, H., Cook, W.D., Mitchell, D.: Behavior of columns constructed with fibers and self-consolidating concrete. ACI Mater. J. 106, 349–357 (2009)

    Google Scholar 

  141. Cunha, V.M.C.F., Barros, J.A.O., Sena-Cruz, J.: Modelling the influence of age of steel fiber reinforced self-compacting concrete on its compressive behaviour. Mater. Struct. 41, 465–478 (2008)

    Article  Google Scholar 

  142. Pereira, E.N.B., Barros, J.A.O., Camoes, A.: Steel fiber reinforced self-compacting concrete: experimental research and numerical simulation. ASCE J. Struct. Eng. 134, 1310–1321 (2008)

    Article  Google Scholar 

  143. Ferrara, L.: Statistical properties of steam-cured plant-produced SCC for prestressed precast applications. In: Shi, C., et al. (eds.) Proceedings SCC2009, 2nd International Symposium on Design, Performance and use of Self-Consolidating Concrete, Beijing, pp. 483–494, 5–8 June 2009. RILEM Publications, Beijing (2009)

    Google Scholar 

  144. Domone, P.L.: A review of the hardened mechanical properties of self-compacting concrete. Cement Concr. Compos. 29, 1–12 (2007)

    Article  Google Scholar 

  145. Torrijos, M.C., Barragan, B.E., Zerbino, R.L.: Physical-mechanical properties, and mesostructure of plain and fiber reinforced self-compacting concrete. Constr. Build. Mater. 22, 1780–1788 (2008)

    Article  Google Scholar 

  146. Mohammed, R.N., Elliot, K. S.: Behaviour of steel fiber self-compacting concrete under biaxial loading. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 1079–1091, 3–5 Sept 2007. Rilem Publications, Gent (2007)

    Google Scholar 

  147. Yin, W.S., Su, E.C.M., Mansur, M.A., Hsu, T.C.H.: Biaxial tests on plain and fiber concrete. ACI Mater. J. 86, 236–243 (1989)

    Google Scholar 

  148. Traina, L.A., Mansour, S.H.: Biaxial strength and deformational behaviour of plain and steel fiber concrete. ACI Mater. J. 88, 354–362 (1991)

    Google Scholar 

  149. Fantilli, A.P., Vallini, P., Chiaia, B.: Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression. Cement Concr. Compos. 33, 520–527 (2011)

    Article  Google Scholar 

  150. Soroushian, P., Lee, C.D.: Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater. J. 87, 433–439 (1990)

    Google Scholar 

  151. Stroeven, P.: Stereological principles of spatial modeling applied to steel fiber reinforced concrete in tension. ACI Mater. J. 106, 213–222 (2009)

    Google Scholar 

  152. Cunha, V.M.C.F., Barros, J.A.O., Sena Cruz, J.M.: An integrated approach for modeling the tensile behaviour of steel fiber reinforced self-compacting concrete. Cem. Concr. Res. 41, 64–76 (2011)

    Google Scholar 

  153. Pons, G., Mouret, M., Alcantara, M., Granju, J.L.: Mechanical behaviour of self-compacting concrete with hybrid fiber reinforcement. Mater. Struct. 40, 201–210 (2007)

    Article  Google Scholar 

  154. Velasco, R.V., Toledo Filho, R.D., Fairbairn, E.M.R.: Behavior under direct tension and bending of self-consolidating concrete reinforced with high volume fractions of steel fibers. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, pp. 751–759, 17–19 Sept 2008. RILEM Publications, Chennai (2008)

    Google Scholar 

  155. Ferrara, L., Caverzan, A., Muhaxheri, M., di Prisco M.: Identification of tensile behaviour of SFR-SCC: direct vs. indirect tests. Accepted for presentation to BEFIB2012

    Google Scholar 

  156. Pansuk, W, Sato, I., Sato, Y., Shionaga, R.: Tensile behaviors and fiber orientation of UHPC. In: Fehling et al. (eds.) Ultra High Performance Concrete, Proceedings 2nd International Symposium on UHPC, KUP, Kassel, Germany, pp. 161–168, 05–07 March 2008

    Google Scholar 

  157. Kang, S.T., Kin, J.K.: The relation between fiber orientation and tensile behavior in ultra high performance fiber reinforced cementitious composites (UHPFRCC). Cem. Concr. Res. 41, 1001–1014 (2011)

    Article  Google Scholar 

  158. Wille, K., Parra Montesinos, G.J.: Effect of beam size, casting method and support conditions on flexural behavior of ultra-high performance fiber-reinforced concrete. ACI Mater. J. 109, 379–388 (2012)

    Google Scholar 

  159. Buratti, N., Mazzotti, C., Savoia, M.: Long term behaviour of self-compacting fiber-reinforced concrete beams. In: Khayat, K.H. Feys, D. (eds.) Design, Production and Placement of Self-Consolidating Concrete, Proceedings of SCC2010, 6th International RILEM Symposium on Self-Compacting Concrete and 4th North American Conference on the Design and Use of SCC, Montreal, Canada, 26–29 Sept 2010, pp. 439–450

    Google Scholar 

  160. Forgeron, D., Omer, A.: Flow characteristics of macro-synthetic fiber reinforced self-consolidating concrete. In: Aldea, C.M., Ferrara, L. (eds.) Fiber Reinforced Self Consolidating Concrete: Research and Application, ACI-SP 274, pp. 1–14 (2010)

    Google Scholar 

  161. Kwon, S.H., Ferron, R.P., Akkaya, Y., Shah, S.P.: Cracking of fiber reinforced self-compacting concrete due to restrained shrinkage. Int. J. Concr. Str. Mater. 1(1), 3–9 (2007)

    Google Scholar 

  162. Carlsward, J., Emborg, M.: Prediction of stress development and cracking in steel fiber reinforced self-compacting concrete overlays due to restrained shrinkage. In: Aldea, C.M., Ferrara, L. (eds.) Fiber reinforced Self Consolidating Concrete: Research and Application, ACI-SP 274, 2010, pp. 31–50

    Google Scholar 

  163. Kassimi, F., Khayat, K.H.: Drying shrinkage model for fiber reinforced SCC. In: Khayat, K.H. Feys, D. (eds.) Design, Production and Placement of Self-Consolidating Concrete, Proceedings of SCC2010 vol II, 6th International RILEM Symposium on Self-Compacting Concrete and 4th North American Conference on the Design and Use of SCC, Montreal, Canada, 26–29 Sept 2010, pp. 1223–1233

    Google Scholar 

  164. Naaman, A.E., Wongtanakitcharoen, T., Hauser, G.: Influence of different fibers on plastic shrinkage cracking of concrete. ACI Mater. J. 102, 49–58 (2005)

    Google Scholar 

  165. Banthia, N., Gupta, R.: Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 36, 1263–1267 (2006)

    Article  Google Scholar 

  166. Khaliq, W., Kodur, V.: Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cem. Concr. Res. 41, 1112–1122 (2011)

    Article  Google Scholar 

  167. Bamonte, P., Gambarova, P.G.: A study on the mechanical properties of self-compacting concrete at high temperature and after cooling. Mater. Str. 45, 1375–1387 (2012). doi:10.1617/s11527-012-9839-9

  168. Colombo, M., di Prisco, M., Felicetti, R.: Mechanical properties of steel fiber reinforced concrete exposed at high temperatures. Mater. Struct. 43, 475–491 (2010)

    Article  Google Scholar 

  169. Alonso, M.C., Rodriguez, C., Sanchez, M., Barragán, B.: “Respuesta al fuego de HAC con y sin renfuerzo de fibras”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1–2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. 143 (in Spanish)

    Google Scholar 

  170. Lourenço, L., Durães, B., Barros, J.A.O., Gonçalves, D.: “Comportamento mecanico do betão auto-compactável reforçado com fibras de aço após exposição a temperaturas elevadas”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1–2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. 85 (in Portuguese)

    Google Scholar 

  171. Romano, G.Q., Silva, F.A., Toledo Filho, R., Fairbairn, E.M.R., Battista, R.C.: Mechanical characterization of steel fiber reinforced self-compacting refractory concrete. In: De Schutter, G., Boel, V., (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 881–886, 3–5 Sept 2007. Rilem Publications, Gent (2007)

    Google Scholar 

  172. Ezeldin, A.S., Balaguru, P.N.: Bond behavior of normal and high.strength fiber reinforced concrete. ACI Mater. J. 86(5), 515–524 (1989)

    Google Scholar 

  173. Schumacher, P.: Rotation capacity of self-compacting steel fiber reinforced concrete. Ph.D. thesis, Delft University of Technology (2006)

    Google Scholar 

  174. Cheung, A.K., Leung, C.K.Y.: Experimental study on the bond between steel reinforcement and self-compacting high strength fiber reinforced cementitious composites. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, pp. 667–678, 17–19 Sept 2008. RILEM Publications, Chennai (2008)

    Google Scholar 

  175. Abrishami, H.H., Mitchell. D.: Influence of steel fibers on tension stiffening. ACI Struct. J. 94, 769–776 (1997)

    Google Scholar 

  176. Aoude, H., Cook, W.D., Mitchell, D.: Tensile behaviour of reinforced concrete specimens constructed with steel fibers and SCC. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, pp. 689–698, 17–19 Sept 2008. RILEM Publications, Chennai (2008)

    Google Scholar 

  177. Shionaga, R., Walraven, J.C., den Ujil, J.A., Sato, Y.: Tension stiffening of high performance fiber reinforced concrete. In: Radic, J. (ed.) Concrete Structures: Stimulators of Development, Proceedings of the fib Symposium, Dubrovnik, Croatia, pp. 259–266, 20–23 May 2007 (Secon HDGK)

    Google Scholar 

  178. Jansson, A., Flansbjer, M., Lofgren, I. Lundgren, K., Gylltoft, K.: Experimental investigation of surface crack initiation, propagation and tension stiffening in self-compacting steel-fiber reinforced concrete. Mater. Struct. 45, 1127 (2012). doi:10.1617/s11527-012-9821-6

  179. Campione, G.: The effects of fibers on the confinement models for concrete columns. Can. J. Civ. Eng. 29, 742–750 (2002)

    Article  Google Scholar 

  180. Aoude, H., Cook, W.D., Mitchell, D.: Behavior of columns constructed with fibers and self-consolidating concrete. ACI Struct. J. 106, 349–357 (2009)

    Google Scholar 

  181. Minelli, F.: Plain and fiber reinforced concrete b eams under shear: structural behaviour and design aspects, p. 429. Ph.D. thesis, University of Brescia (2005)

    Google Scholar 

  182. Batson, G., Jenkins, E., Spatney, R.: Steel fibers as shear reinforcement in beams. ACI Journal 69, 640–644 (1972)

    Google Scholar 

  183. Cuenca, E., Serna, P.: Shear behaviour of self-compacting concrete and fiber reinforced concrete beams. In: Khayat, K.H., Feys, D. (eds.) Design, Production and Placement of Self-Consolidating Concrete, Proceedings of SCC2010 vol II, 6th International RILEM Symposium on Self-Compacting Concrete and 4th North American Conference on the Design and Use of SCC, Montreal, Canada, pp. 1273–1282, 26–29 Sept 2010

    Google Scholar 

  184. Ding, Y., You, Z., Jalali, S.: The composite effect of steel fibers and stirrups on the shear-behaviour of beams using self-consolidating concrete. Eng. Struct. 33, 107–117 (2011)

    Article  Google Scholar 

  185. Greenough, T., Nehdi, M.: Shear behaviour of fiber.reinforced self-consolidating concrete slender beams. ACI Struct. J. 105, 468–477 (2008)

    Google Scholar 

  186. Bindiganavile, V., Banthia, N., Aarup, B.: Impact response of ultra-high strength fiber reinforced cement composites. ACI Mater. J. 99, 543–548 (2002)

    Google Scholar 

  187. Gonçalves, D., Barros, J., Lourenço, L., Sampaio, C.: “Cobertura pré-fabricada em betão auto-compactável reforçado com fibras de aço”, in BAC 2010, Proceedings 2° Congreso Iberico Betão Auto-Compactável – Hormigón AutoCompactante, J. Barros et al. eds., 1-2 July 2010, Guimarães, Portugal, Multicomp, 10 pp. (CD-ROM), abstract p. (in Portuguese)

    Google Scholar 

  188. Mesbah, H.A., Kassimi, F., Yahia, A., Khayat, K.H.: Flexural performance of reinforced concrete beams repaired with fiber-reinforced SCC. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent, Belgium, pp. 637–644, 3–5 Sept 2007. Rilem Publications, Gent (2007) (PRO 54)

    Google Scholar 

  189. Martinola, G., Meda, A., Plizzari, G., Rinaldi, Z.: Strengthening and repair of RC beams with fiber reinforced concrete. Cem. Concr. Compos. 32, 731–739 (2010)

    Article  Google Scholar 

  190. Beschi, C., Maringoni, S., Meda, A., Riva, P., Simonelli, F.: Use of HPC jacketing for seismic retrofitting of columns. In: Atti 17° Congresso CTE, Roma, 5-8 novembre 2008, pp. 913–920 (in Italian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liberato Ferrara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Ferrara, L. (2014). Fiber Reinforced SCC. In: Khayat, K., De Schutter, G. (eds) Mechanical Properties of Self-Compacting Concrete. RILEM State-of-the-Art Reports, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-03245-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03245-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03244-3

  • Online ISBN: 978-3-319-03245-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics