Cloning and Expression of AaeAPO from Agrocybe aegerita to E. coli, for Studies of Structure-Function Relationships by Site-Specific MutagenesisOpen image in new window

  • Xiaoshi WangEmail author
Part of the Springer Theses book series (Springer Theses)


So far, much has been learned from the functional and mechanistic investigation on AaeAPO. However, one of the major limitations of AaeAPO investigation comes from the slow growth of Agrocybe aegerita and the low yield of protein production. Cloning AaeAPO from its original host to E. coli, Saccharomyces cerevisiae or Aspergillus niger might be a way to produce the protein in large amounts within a short time and to perform mutations. In this chapter, we first address the successful purification of wild type AaeAPO from Agrocybe aegerita. Next, results on the isolation of apo mRNA, RT-PCR obtaining the apo cDNA, cloning and expression AaeAPO in E. coli will be reported. However, the recombinant protein from E. coli forms inclusion bodies thus has no activity. Last, several future experiments on protein reconstitution with heme and the expression of AaeAPO in fungus strains will be discussed.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Aspergillus Oryzae Peracetic Acid Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ullrich, R., Nuske, J., Scheibner, K., Spantzel, J., Hofrichter, M.: Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microb. 70, 4575–4581 (2004)CrossRefGoogle Scholar
  2. 2.
    Grobe, G., Ullrich, R., Pecyna, M.J., Kapturska, D., Friedrich, S., Hofrichter, M., Scheibner, K.: High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1, 31–42 (2011)CrossRefGoogle Scholar
  3. 3.
    Zong, Q., Osmulski, P.A., Hager, L.P.: High-pressure-assisted reconstitution of recombinant chloroperoxidase. Biochemistry 34, 12420–12425 (1995)CrossRefGoogle Scholar
  4. 4.
    Barnes, H.J., Arlotto, M.P., Waterman, M.R.: Expression and enzymatic activity of recombinant cytochrome P450 17α-hydroxylase in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 88, 5597–5601 (1991)CrossRefGoogle Scholar
  5. 5.
    Pecyna, M.J., Ullrich, R., Bittner, B., Clemens, A., Scheibner, K., Schubert, R., Hofrichter, M.: Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl. Microbiol. Biot. 84, 885–897 (2009)CrossRefGoogle Scholar
  6. 6.
    Sjöström, M., Wold, S., Wieslander, A., Rilfors, L.: Signal peptide amino acid sequences in Escherichia coli contain information related to final protein localization. A multivariate data analysis. EMBO J. 6, 823–831 (1987)Google Scholar
  7. 7.
    Rao Movva, N., Nakamura, K., Inouye, M.: Amino acid sequence of the signal peptide of ompA protein, a major outer membrane protein of Escherichia coli. J. Biol. Chem. 255, 27–29 (1980)Google Scholar
  8. 8.
    Roth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K.G., Le Fourn, V., Santimaria, R., Guhl, B., Cho, J.W.: Protein N-glycosylation, protein folding, and protein quality control. Mol. Cells 30, 497–506 (2010)CrossRefGoogle Scholar
  9. 9.
    Conesa, A., Van De Velde, F., Van Rantwijk, F., Sheldon, R.A., Van Den Hondel, C.A.M.J.J., Punt, P.J.: Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J. Biol. Chem. 276, 17635–17640 (2001)CrossRefGoogle Scholar
  10. 10.
    Conesa, A., Van Den Hondel, C.A.M.J.J., Punt, P.J.: Studies on the production of fungal peroxidases in Aspergillus niger. Appl. Environ. Microb. 66, 3016–3023 (2000)CrossRefGoogle Scholar
  11. 11.
    Hofrichter, M.: Insights into catalysis, structure and phylogeny of fungal peroxygenases. In: 18th International Conference on Cytochrome P450, Seattle, WA, USA (2013)Google Scholar
  12. 12.
    Imai, M., Shimada, H., Watanabe, Y., Matsuhima-Hibiya, Y., Makino, R., Koga, H., Horiuchi, T., Ishimura, Y.: Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: a possible role of the hydroxy amino acid in oxygen activation. Proc. Natl. Acad. Sci. U.S.A. 86, 7823–7827 (1989)CrossRefGoogle Scholar
  13. 13.
    Yi, X., Conesa, A., Punt, P.J., Hager, L.P.: Examining the role of glutamic acid 183 in chloroperoxidase catalysis. J. Biol. Chem. 278, 13855–13859 (2003)CrossRefGoogle Scholar
  14. 14.
    Pilbrow, J.R.: Transition Ion Electron Paramagnetic Resonance. Oxford University Press, Oxford (1991)Google Scholar
  15. 15.
    Carrington, A., McLachlan, A.D.: Introduction to Magnetic Resonance. Harper and Row, New York (1967)Google Scholar
  16. 16.
    Lipscomb, J.D.: Electron paramagnetic resonance detectable states of cytochrome P-450cam. Biochemistry 19, 3590–3599 (1980)CrossRefGoogle Scholar
  17. 17.
    Hollenberg, P.F., Hager, L.P., Blumberg, W.E., Peisach, J.: An electron paramagnetic resonance study of the high and low spin forms of chloroperoxidase. J. Biol. Chem. 255, 4801–4807 (1980)Google Scholar
  18. 18.
    Fujishiro, T., Shoji, O., Nagano, S., Sugimoto, H., Shiro, Y., Watanabe, Y.: Crystal structure of H2O2- dependent cytochrome P450 SPα with its bound fatty acid substrate: insight into the regioselective hydroxylation of fatty acids at the α position. J. Biol. Chem. 286, 29941–29950 (2011)CrossRefGoogle Scholar
  19. 19.
    Gillam, E.M.J.: Engineering cytochrome P450 enzymes. Chem. Res. Toxicol. 21, 220–231 (2008)CrossRefGoogle Scholar
  20. 20.
    Yoshioka, S., Takahashi, S., Hori, H., Ishimori, K., Morishima, I.: Proximal cysteine residue is essential for the enzymatic activities of cytochrome p450cam. Eur. J. Biochem. 268, 252–259 (2001)CrossRefGoogle Scholar
  21. 21.
    Auclair, K., Moënne-Loccoz, P., Ortiz de Montellano, P.R.: Roles of the proximal heme thiolate ligand in cytochrome P450cam. J. Am. Chem. Soc. 123, 4877–4885 (2001)Google Scholar
  22. 22.
    Adachi, S.I., Nagano, S., Ishimori, K., Watanabe, Y., Morishima, I., Egawa, T., Kitagawa, T., Makino, R.: Roles of proximal ligand in heme proteins: replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase. Biochemistry 32, 241–252 (1993)CrossRefGoogle Scholar
  23. 23.
    Adachi, S.I., Nagano, S., Watanabe, Y., Ishimori, K., Morishima, I.: Alteration of human myoglobin proximal histidine to cysteine or tyrosine by site-directed mutagenesis: characterization and their catalytic activities. Biochem. Bioph. Res. Co. 180, 138–144 (1991)CrossRefGoogle Scholar
  24. 24.
    Peters, M.W., Meinhold, P., Glieder, A., Arnold, F.H.: Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125, 13442–13450 (2003)CrossRefGoogle Scholar
  25. 25.
    Ozaki, S.I., Ortiz De Montellano, P.R.: Molecular engineering of horseradish peroxidase: thioether sulfoxidation and styrene epoxidation by Phe-41 leucine and threonine mutants. J. Am. Chem. Soc. 117, 7056–7064 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.PhiladelphiaUSA

Personalised recommendations