Driving Force for Oxygen Atom Transfer by Heme-Thiolate EnzymesOpen image in new window

  • Xiaoshi WangEmail author
Part of the Springer Theses book series (Springer Theses)


The heme-thiolate peroxygenase AaeAPO from Agrocybe aegerita is an important biocatalyst and P450 analog. We have found that AaeAPO compound I can be formed via oxidation of the ferric protein with HOBr and HOCl. The rate constant for the formation of AaeAPO-I induced by HOBr at pH 5.0, 4 °C was 7.1 × 10 M−1s−1. AaeAPO-I reacts with bromide and chloride ions to regenerate the resting ferric protein. Similar measurements were made for chloroperoxidase (CPO). The rate constant for the reaction of AaeAPO-I with bromide ion at pH 5.0, 4 °C was 2.6 × 105 M−1s−1. By measuring the rates of the forward and reverse reactions over a wide range of pH, Nernst plots of the driving force for oxygen atom transfer from AaeAPO-I and CPO-I can be constructed. It is found that CPO-I and AaeAPO-I have a two-electron redox potential similar to that of HOBr and about 200 mV less than that of HOCl. Interestingly, CPO-I and AaeAPO-I are both much more oxidizing than HRP compound I. The results are informative with regard to the reactivity of these proteins toward C–H bonds.


Redox Potential Oxygen Atom Transfer Ferric Protein Ferric Enzyme Agrocybe Aegerita 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hofrichter, M., Ullrich, R., Pecyna, M.J., Liers, C., Lundell, T.: New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 87, 871–897 (2010)CrossRefGoogle Scholar
  2. 2.
    Peter, S., Kinne, M., Wang, X., Ullrich, R., Kayser, G., Groves, J.T., Hofrichter, M.: Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J. 278, 3667–3675 (2011)CrossRefGoogle Scholar
  3. 3.
    Ullrich, R., Hofrichter, M.: The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett. 579, 6247–6250 (2005)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Peter, S., Kinne, M., Hofrichter, M., Groves, J.T.: Detection and kinetic characterization of a highly reactive heme-thiolate peroxygenase compound I. J. Am. Chem. Soc. 134, 12897–12900 (2012)CrossRefGoogle Scholar
  5. 5.
    Rittle, J., Green, M.T.: Cytochrome P450 compound i: capture, characterization, and C-H bond activation kinetics. Science 330, 933–937 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhang, R., Nagraj, N., Lansakara, D.S.P., Hager, L.P., Newcomb, M.: Kinetics of two-electron oxidations by the compound I derivative of chloroperoxidase, a model for cytochrome P450 oxidants. Org. Lett. 8, 2731–2734 (2006)CrossRefGoogle Scholar
  7. 7.
    Mayer, J.M.: Hydrogen atom abstraction by metal-oxo complexes: understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998)CrossRefGoogle Scholar
  8. 8.
    Bordwell, F.G., Cheng, J.P., Ji, G.Z., Satish, A.V., Zhang, X.: Bond dissociation energies in DMSO related to the gas phase. J. Am. Chem. Soc. 113, 9790–9795 (1991)CrossRefGoogle Scholar
  9. 9.
    Concepcion, J.J., Jurss, J.W., Brennaman, M.K., Hoertz, P.G., Patrocinio, A.O.T., Iha, N.Y.M., Templeton, J.L., Meyer, T.J.: Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009)CrossRefGoogle Scholar
  10. 10.
    Meyer, T.J., Huynh, M.H.V., Thorp, H.H.: The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 46, 5284–5304 (2007)CrossRefGoogle Scholar
  11. 11.
    Mayer, J.M.: Proton-coupled electron transfer: a reaction chemist’s view. Annu. Rev. Phys. Chem. 55, 363–390 (2004)CrossRefGoogle Scholar
  12. 12.
    Cukier, R.I., Nocera, D.G.: Proton-coupled electron transfer. Annu. Rev. Phys. Chem. 49, 337–369 (1998)CrossRefGoogle Scholar
  13. 13.
    Borovik, A.S.: Role of metal-oxo complexes in the cleavage of C-H bonds. Chem. Soc. Rev. 40, 1870–1874 (2011)CrossRefGoogle Scholar
  14. 14.
    Warren, J.J., Tronic, T.A., Mayer, J.M.: Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010)CrossRefGoogle Scholar
  15. 15.
    Gunay, A., Theopold, K.H.: C-H bond activations by metal oxo compounds. Chem. Rev. 110, 1060–1081 (2010)CrossRefGoogle Scholar
  16. 16.
    Waidmann, C.R., Miller, A.J.M., Ng, C.W.A., Scheuermann, M.L., Porter, T.R., Tronic, T.A., Mayer, J.M.: Using combinations of oxidants and bases as PCET reactants: thermochemical and practical considerations. Energy Environ. Sci. 5, 7771–7780 (2012)CrossRefGoogle Scholar
  17. 17.
    Lai, W.Z., Li, C.S., Chen, H., Shaik, S.: Hydrogen-abstraction reactivity patterns from A to Y: the valence bond way. Angew. Chem. Int. Ed. 51, 5556–5578 (2012)CrossRefGoogle Scholar
  18. 18.
    Jin, N., Bourassa, J.L., Tizio, S.C., Groves, J.T.: Rapid, reversible oxygen atom transfer between an oxomanganese(V) porphyrin and bromide: a haloperoxidase mimic with enzymatic rates. Angew. Chem. 112, 4007–4009 (2000); Angew. Chem. Int. Ed. 39, 3849–3851 (2000)Google Scholar
  19. 19.
    Lahaye, D., Groves, J.T.: Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin. J. Inorg. Biochem. 101, 1786–1797 (2007)CrossRefGoogle Scholar
  20. 20.
    Umile, T.P., Wang, D., Groves, J.T.: Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation. Inorg. Chem. 50, 10353–10362 (2011)CrossRefGoogle Scholar
  21. 21.
    Umile, T.P., Groves, J.T.: Catalytic generation of chlorine dioxide from chlorite using a water-soluble manganese porphyrin. Angew. Chem. Int. Ed. 50, 695–698 (2011)CrossRefGoogle Scholar
  22. 22.
    Bell, S.R.: Modeling heme monoxygenases with water-soluble iron porphyrins. PhD, Princeton University (2010)Google Scholar
  23. 23.
    Pecyna, M.J., Ullrich, R., Bittner, B., Clemens, A., Scheibner, K., Schubert, R., Hofrichter, M.: Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl. Microbiol. Biotechnol. 84, 885–897 (2009)CrossRefGoogle Scholar
  24. 24.
    Sundaramoorthy, M., Terner, J., Poulos, T.L.: Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem. Biol. 5, 461–473 (1998)CrossRefGoogle Scholar
  25. 25.
    Bard, A.J., Parsons, R., Jordan, J.: Standard potentials in aqueous solution. Marcel Dekker Inc., New York (1985)Google Scholar
  26. 26.
    Walker, J.V., Morey, M., Carlsson, H., Davidson, A., Stucky, G.D., Butler, A.: Peroxidative halogenation catalyzed by transition-metal-ion-grafted mesoporous silicate materials [2]. J. Am. Chem. Soc. 119, 6921–6922 (1997)CrossRefGoogle Scholar
  27. 27.
    Totaro, R.M., Williams, P.A.M., Apella, M.C., Blesa, M.A., Baran, E.J.: Bromination of phenol red mediated by vanadium(v) peroxo complexes at pH 6.5. J. Chem. Soc. Dalton Trans. 4403–4406 (2000)Google Scholar
  28. 28.
    Holm, R.H., Donahue, J.P.: A thermodynamic scale for oxygen atom transfer reactions. Polyhedron 12, 57–589 (1993)CrossRefGoogle Scholar
  29. 29.
    Zaks, A., Dodds, D.R.: Chloroperoxidase-catalyzed asymmetric oxidations: substrate-specificity and mechanistic study. J. Am. Chem. Soc. 117, 10419–10424 (1995)CrossRefGoogle Scholar
  30. 30.
    Su, Z., Horner, J.H., Newcomb, M.: Rates of fatty acid oxidations by P450 compound I are pH dependent. ChemBioChem 13, 2061–2064 (2012)CrossRefGoogle Scholar
  31. 31.
    Davydov, R., Dawson, J.H., Perera, R., Hoffman, B.M.: The use of deuterated camphor as a substrate in H-1 ENDOR studies of hydroxylation by cryoreduced Oxy P450cam provides new evidence of the involvement of compound I. Biochemistry 52, 667–671 (2013)CrossRefGoogle Scholar
  32. 32.
    Farhangrazi, Z.S., Fossett, M.E., Powers, L.S., Ellis Jr, W.R.: Variable-temperature spectroelectrochemical study of horseradish peroxidase. Biochemistry 34, 2866–2871 (1995)CrossRefGoogle Scholar
  33. 33.
    Kumar, D., De Visser, S.P., Sharma, P.K., Derat, E., Shaik, S.: The intrinsic axial ligand effect on propene oxidation by horseradish peroxidase versus cytochrome P450 enzymes. J. Biol. Inorg. Chem. 10, 181–189 (2005)CrossRefGoogle Scholar
  34. 34.
    Kumar, D., Sastry, G.N., de Visser, S.P.: Axial ligand effect on the rate constant of aromatic hydroxylation by Iron(IV)-oxo complexes mimicking cytochrome P450 enzymes. J. Phys. Chem. B 116, 718–730 (2012)CrossRefGoogle Scholar
  35. 35.
    Dey, A., Jiang, Y., Ortiz de Montellano, P.R., Hodgson, K.O., Hedman, B., Solomon, E.I.: S K-edge XAS and DFT calculations on cytochrome P450: covalent and ionic contributions to the cysteine-Fe bond and their contribution to reactivity. J. Am. Chem. Soc. 131, 7869–7878 (2009)CrossRefGoogle Scholar
  36. 36.
    Takahashi, A., Yamaki, D., Ikemura, K., Kurahashi, T., Ogura, T., Hada, M., Fujii, H.: Effect of the axial ligand on the reactivity of the Oxoiron(IV) porphyrin pi-cation radical complex: higher stabilization of the product state relative to the reactant state. Inorg. Chem. 51, 7296–7305 (2012)CrossRefGoogle Scholar
  37. 37.
    Hughes, T.F., Friesner, R.A.: Development of accurate DFT methods for computing redox potentials of transition metal complexes: results for model complexes and application to cytochrome P450. J. Chem. Theory Comput. 8, 442–459 (2012)CrossRefGoogle Scholar
  38. 38.
    Isobe, H., Yamaguchi, K., Okumura, M., Shimada, J.: Role of perferryl-oxo oxidant in alkane hydroxylation catalyzed by cytochrome P450: a hybrid density functional study. J. Phys. Chem. B 116, 4713–4730 (2012)CrossRefGoogle Scholar
  39. 39.
    Green, M.T., Dawson, J.H., Gray, H.B.: Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry. Science 304, 1653–1656 (2004)CrossRefGoogle Scholar
  40. 40.
    Wang, D., Zhang, M., Buhlmann, P., Que, L.: Redox potential and C–H bond cleaving properties of a nonheme Fe-IV=O complex in aqueous solution. J. Am. Chem. Soc. 132, 7638–7644 (2010)CrossRefGoogle Scholar
  41. 41.
    Hayashi, Y., Yamazaki, I.: Oxidation-reduction potentials of compound-I-compound-Ii and compound-Ii-ferric couples of horseradish peroxidases A2 and C. J. Biol. Chem. 254, 9101–9106 (1979)Google Scholar
  42. 42.
    Bell, S.R., Groves, J.T.: A highly reactive P450 model compound I. J. Am. Chem. Soc. 131, 9640–9641 (2009)CrossRefGoogle Scholar
  43. 43.
    Ullrich, R., Nuske, J., Scheibner, K., Spantzel, J., Hofrichter, M.: Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70, 4575–4581 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.PhiladelphiaUSA

Personalised recommendations