Skip to main content

Driving Force for Oxygen Atom Transfer by Heme-Thiolate Enzymes

  • Chapter
  • First Online:
  • 506 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The heme-thiolate peroxygenase AaeAPO from Agrocybe aegerita is an important biocatalyst and P450 analog. We have found that AaeAPO compound I can be formed via oxidation of the ferric protein with HOBr and HOCl. The rate constant for the formation of AaeAPO-I induced by HOBr at pH 5.0, 4 °C was 7.1 × 10 M−1s−1. AaeAPO-I reacts with bromide and chloride ions to regenerate the resting ferric protein. Similar measurements were made for chloroperoxidase (CPO). The rate constant for the reaction of AaeAPO-I with bromide ion at pH 5.0, 4 °C was 2.6 × 105 M−1s−1. By measuring the rates of the forward and reverse reactions over a wide range of pH, Nernst plots of the driving force for oxygen atom transfer from AaeAPO-I and CPO-I can be constructed. It is found that CPO-I and AaeAPO-I have a two-electron redox potential similar to that of HOBr and about 200 mV less than that of HOCl. Interestingly, CPO-I and AaeAPO-I are both much more oxidizing than HRP compound I. The results are informative with regard to the reactivity of these proteins toward C–H bonds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hofrichter, M., Ullrich, R., Pecyna, M.J., Liers, C., Lundell, T.: New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 87, 871–897 (2010)

    Article  CAS  Google Scholar 

  2. Peter, S., Kinne, M., Wang, X., Ullrich, R., Kayser, G., Groves, J.T., Hofrichter, M.: Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J. 278, 3667–3675 (2011)

    Article  CAS  Google Scholar 

  3. Ullrich, R., Hofrichter, M.: The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett. 579, 6247–6250 (2005)

    Article  CAS  Google Scholar 

  4. Wang, X., Peter, S., Kinne, M., Hofrichter, M., Groves, J.T.: Detection and kinetic characterization of a highly reactive heme-thiolate peroxygenase compound I. J. Am. Chem. Soc. 134, 12897–12900 (2012)

    Article  CAS  Google Scholar 

  5. Rittle, J., Green, M.T.: Cytochrome P450 compound i: capture, characterization, and C-H bond activation kinetics. Science 330, 933–937 (2010)

    Article  CAS  Google Scholar 

  6. Zhang, R., Nagraj, N., Lansakara, D.S.P., Hager, L.P., Newcomb, M.: Kinetics of two-electron oxidations by the compound I derivative of chloroperoxidase, a model for cytochrome P450 oxidants. Org. Lett. 8, 2731–2734 (2006)

    Article  CAS  Google Scholar 

  7. Mayer, J.M.: Hydrogen atom abstraction by metal-oxo complexes: understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998)

    Article  CAS  Google Scholar 

  8. Bordwell, F.G., Cheng, J.P., Ji, G.Z., Satish, A.V., Zhang, X.: Bond dissociation energies in DMSO related to the gas phase. J. Am. Chem. Soc. 113, 9790–9795 (1991)

    Article  CAS  Google Scholar 

  9. Concepcion, J.J., Jurss, J.W., Brennaman, M.K., Hoertz, P.G., Patrocinio, A.O.T., Iha, N.Y.M., Templeton, J.L., Meyer, T.J.: Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009)

    Article  CAS  Google Scholar 

  10. Meyer, T.J., Huynh, M.H.V., Thorp, H.H.: The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 46, 5284–5304 (2007)

    Article  CAS  Google Scholar 

  11. Mayer, J.M.: Proton-coupled electron transfer: a reaction chemist’s view. Annu. Rev. Phys. Chem. 55, 363–390 (2004)

    Article  CAS  Google Scholar 

  12. Cukier, R.I., Nocera, D.G.: Proton-coupled electron transfer. Annu. Rev. Phys. Chem. 49, 337–369 (1998)

    Article  CAS  Google Scholar 

  13. Borovik, A.S.: Role of metal-oxo complexes in the cleavage of C-H bonds. Chem. Soc. Rev. 40, 1870–1874 (2011)

    Article  CAS  Google Scholar 

  14. Warren, J.J., Tronic, T.A., Mayer, J.M.: Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010)

    Article  CAS  Google Scholar 

  15. Gunay, A., Theopold, K.H.: C-H bond activations by metal oxo compounds. Chem. Rev. 110, 1060–1081 (2010)

    Article  CAS  Google Scholar 

  16. Waidmann, C.R., Miller, A.J.M., Ng, C.W.A., Scheuermann, M.L., Porter, T.R., Tronic, T.A., Mayer, J.M.: Using combinations of oxidants and bases as PCET reactants: thermochemical and practical considerations. Energy Environ. Sci. 5, 7771–7780 (2012)

    Article  CAS  Google Scholar 

  17. Lai, W.Z., Li, C.S., Chen, H., Shaik, S.: Hydrogen-abstraction reactivity patterns from A to Y: the valence bond way. Angew. Chem. Int. Ed. 51, 5556–5578 (2012)

    Article  CAS  Google Scholar 

  18. Jin, N., Bourassa, J.L., Tizio, S.C., Groves, J.T.: Rapid, reversible oxygen atom transfer between an oxomanganese(V) porphyrin and bromide: a haloperoxidase mimic with enzymatic rates. Angew. Chem. 112, 4007–4009 (2000); Angew. Chem. Int. Ed. 39, 3849–3851 (2000)

    Google Scholar 

  19. Lahaye, D., Groves, J.T.: Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin. J. Inorg. Biochem. 101, 1786–1797 (2007)

    Article  CAS  Google Scholar 

  20. Umile, T.P., Wang, D., Groves, J.T.: Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation. Inorg. Chem. 50, 10353–10362 (2011)

    Article  CAS  Google Scholar 

  21. Umile, T.P., Groves, J.T.: Catalytic generation of chlorine dioxide from chlorite using a water-soluble manganese porphyrin. Angew. Chem. Int. Ed. 50, 695–698 (2011)

    Article  CAS  Google Scholar 

  22. Bell, S.R.: Modeling heme monoxygenases with water-soluble iron porphyrins. PhD, Princeton University (2010)

    Google Scholar 

  23. Pecyna, M.J., Ullrich, R., Bittner, B., Clemens, A., Scheibner, K., Schubert, R., Hofrichter, M.: Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl. Microbiol. Biotechnol. 84, 885–897 (2009)

    Article  CAS  Google Scholar 

  24. Sundaramoorthy, M., Terner, J., Poulos, T.L.: Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem. Biol. 5, 461–473 (1998)

    Article  CAS  Google Scholar 

  25. Bard, A.J., Parsons, R., Jordan, J.: Standard potentials in aqueous solution. Marcel Dekker Inc., New York (1985)

    Google Scholar 

  26. Walker, J.V., Morey, M., Carlsson, H., Davidson, A., Stucky, G.D., Butler, A.: Peroxidative halogenation catalyzed by transition-metal-ion-grafted mesoporous silicate materials [2]. J. Am. Chem. Soc. 119, 6921–6922 (1997)

    Article  CAS  Google Scholar 

  27. Totaro, R.M., Williams, P.A.M., Apella, M.C., Blesa, M.A., Baran, E.J.: Bromination of phenol red mediated by vanadium(v) peroxo complexes at pH 6.5. J. Chem. Soc. Dalton Trans. 4403–4406 (2000)

    Google Scholar 

  28. Holm, R.H., Donahue, J.P.: A thermodynamic scale for oxygen atom transfer reactions. Polyhedron 12, 57–589 (1993)

    Article  Google Scholar 

  29. Zaks, A., Dodds, D.R.: Chloroperoxidase-catalyzed asymmetric oxidations: substrate-specificity and mechanistic study. J. Am. Chem. Soc. 117, 10419–10424 (1995)

    Article  CAS  Google Scholar 

  30. Su, Z., Horner, J.H., Newcomb, M.: Rates of fatty acid oxidations by P450 compound I are pH dependent. ChemBioChem 13, 2061–2064 (2012)

    Article  CAS  Google Scholar 

  31. Davydov, R., Dawson, J.H., Perera, R., Hoffman, B.M.: The use of deuterated camphor as a substrate in H-1 ENDOR studies of hydroxylation by cryoreduced Oxy P450cam provides new evidence of the involvement of compound I. Biochemistry 52, 667–671 (2013)

    Article  CAS  Google Scholar 

  32. Farhangrazi, Z.S., Fossett, M.E., Powers, L.S., Ellis Jr, W.R.: Variable-temperature spectroelectrochemical study of horseradish peroxidase. Biochemistry 34, 2866–2871 (1995)

    Article  CAS  Google Scholar 

  33. Kumar, D., De Visser, S.P., Sharma, P.K., Derat, E., Shaik, S.: The intrinsic axial ligand effect on propene oxidation by horseradish peroxidase versus cytochrome P450 enzymes. J. Biol. Inorg. Chem. 10, 181–189 (2005)

    Article  CAS  Google Scholar 

  34. Kumar, D., Sastry, G.N., de Visser, S.P.: Axial ligand effect on the rate constant of aromatic hydroxylation by Iron(IV)-oxo complexes mimicking cytochrome P450 enzymes. J. Phys. Chem. B 116, 718–730 (2012)

    Article  CAS  Google Scholar 

  35. Dey, A., Jiang, Y., Ortiz de Montellano, P.R., Hodgson, K.O., Hedman, B., Solomon, E.I.: S K-edge XAS and DFT calculations on cytochrome P450: covalent and ionic contributions to the cysteine-Fe bond and their contribution to reactivity. J. Am. Chem. Soc. 131, 7869–7878 (2009)

    Article  CAS  Google Scholar 

  36. Takahashi, A., Yamaki, D., Ikemura, K., Kurahashi, T., Ogura, T., Hada, M., Fujii, H.: Effect of the axial ligand on the reactivity of the Oxoiron(IV) porphyrin pi-cation radical complex: higher stabilization of the product state relative to the reactant state. Inorg. Chem. 51, 7296–7305 (2012)

    Article  CAS  Google Scholar 

  37. Hughes, T.F., Friesner, R.A.: Development of accurate DFT methods for computing redox potentials of transition metal complexes: results for model complexes and application to cytochrome P450. J. Chem. Theory Comput. 8, 442–459 (2012)

    Article  CAS  Google Scholar 

  38. Isobe, H., Yamaguchi, K., Okumura, M., Shimada, J.: Role of perferryl-oxo oxidant in alkane hydroxylation catalyzed by cytochrome P450: a hybrid density functional study. J. Phys. Chem. B 116, 4713–4730 (2012)

    Article  CAS  Google Scholar 

  39. Green, M.T., Dawson, J.H., Gray, H.B.: Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry. Science 304, 1653–1656 (2004)

    Article  CAS  Google Scholar 

  40. Wang, D., Zhang, M., Buhlmann, P., Que, L.: Redox potential and C–H bond cleaving properties of a nonheme Fe-IV=O complex in aqueous solution. J. Am. Chem. Soc. 132, 7638–7644 (2010)

    Article  CAS  Google Scholar 

  41. Hayashi, Y., Yamazaki, I.: Oxidation-reduction potentials of compound-I-compound-Ii and compound-Ii-ferric couples of horseradish peroxidases A2 and C. J. Biol. Chem. 254, 9101–9106 (1979)

    CAS  Google Scholar 

  42. Bell, S.R., Groves, J.T.: A highly reactive P450 model compound I. J. Am. Chem. Soc. 131, 9640–9641 (2009)

    Article  CAS  Google Scholar 

  43. Ullrich, R., Nuske, J., Scheibner, K., Spantzel, J., Hofrichter, M.: Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70, 4575–4581 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshi Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, X. (2016). Driving Force for Oxygen Atom Transfer by Heme-Thiolate Enzymes . In: A Novel Heme-Thiolate Peroxygenase AaeAPO and Its Implications for C-H Activation Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-03236-8_5

Download citation

Publish with us

Policies and ethics