Advertisement

Efficient and Selective Alkane Hydroxylation Reactions Catalyzed by the Fungal Peroxygenase AaeAPOOpen image in new window

  • Xiaoshi WangEmail author
Chapter
  • 339 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we report AaeAPO catalyzed alkane hydroxylations with H2O2 as the sole oxidant. High selectivity for alcohols, high efficiency of H2O2 utilization, high regioselectivity and stereospecificity were observed. The scope of the alkane substrates includes linear, branched and cyclic hydrocarbons, further expanding to gaseous ethane, propane and neopentane. Metabolites of several drug molecules were also analyzed and compared with P450s metabolites. Combining with coenzymes or cofactors, AaeAPO can also utilize the environmentally desirable oxidant O2 to perform C–H oxidation. All these various reactions suggest that AaeAPO has potential practical application as an industrial biocatalyst.

Keywords

Gluconic Acid Veratryl Alcohol Linear Alkane Potential Industrial Application Methylococcus Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hofrichter, M., Ullrich, R.: Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl. Microbiol. Biotechnol. 71, 276–288 (2006)CrossRefGoogle Scholar
  2. 2.
    Ullrich, R., Hofrichter, M.: The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett. 579, 6247–6250 (2005)CrossRefGoogle Scholar
  3. 3.
    Kinne, M., Poraj-Kobielska, M., Ralph, S.A., Ullrich, R., Hofrichter, M., Hammel, K.E.: Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J. Biol. Chem. 284, 29343–29349 (2009)CrossRefGoogle Scholar
  4. 4.
    Kinne, M., Zeisig, C., Ullrich, R., Kayser, G., Hammel, K.E., Hofrichter, M.: Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase. Biochem. Bioph. Res. Co. 397, 18–21 (2010)CrossRefGoogle Scholar
  5. 5.
    Kluge, M., Ullrich, R., Scheibner, K., Hofrichter, M.: Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem. 14, 440–446 (2012)CrossRefGoogle Scholar
  6. 6.
    Peter, S., Kinne, M., Wang, X., Ullrich, R., Kayser, G., Groves, J.T., Hofrichter, M.: Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J. 278, 3667–3675 (2011)CrossRefGoogle Scholar
  7. 7.
    Natarajan, K.R.: Biocatalysis in organic solvents. J. Chem. Educ. 68, 13–16 (1991)CrossRefGoogle Scholar
  8. 8.
    Klibanov, A.M.: Improving enzymes by using them in organic solvents. Nature 409, 241–246 (2001)CrossRefGoogle Scholar
  9. 9.
    Colby, J., Stirling, D.I., Dalton, H.: The soluble methane mono oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n alkanes, n alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165, 395–402 (1977)CrossRefGoogle Scholar
  10. 10.
    Johnson, E.L., Hyman, M.R.: Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl. Environ. Microbiol. 72, 950–952 (2006)CrossRefGoogle Scholar
  11. 11.
    Koch, D.J., Chen, M.M., Van Beilen, J.B., Arnold, F.H.: In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl. Environ. Microbiol. 75, 337–344 (2009)CrossRefGoogle Scholar
  12. 12.
    Peters, M.W., Meinhold, P., Glieder, A., Arnold, F.H.: Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125, 13442–13450 (2003)CrossRefGoogle Scholar
  13. 13.
    Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N.S., Hofrichter, M., Rogalski, J.: Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27, 175–185 (1999)CrossRefGoogle Scholar
  14. 14.
    White, R.E., Miller, J.P., Favreau, L.V., Bhattacharyya, A.: Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450. J. Am. Chem. Soc. 108, 6024–6031 (1986)CrossRefGoogle Scholar
  15. 15.
    Kluge, M., Ullrich, R., Scheibner, K., Hofrichter, M.: Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem. 14, 440–446 (2012)CrossRefGoogle Scholar
  16. 16.
    Zaks, A., Dodds, D.R.: Chloroperoxidase-catalyzed asymmetric oxidations: substrate-specificity and mechanistic study. J. Am. Chem. Soc. 117, 10419–10424 (1995)CrossRefGoogle Scholar
  17. 17.
    Filipovic, D., Paulsen, M.D., Loida, P.J., Sligar, S.G., Ornstein, R.L.: Ethylbenzene hydroxylation by cytochrome P450cam. Biochem. Bioph. Res. Co. 189, 488–495 (1992)CrossRefGoogle Scholar
  18. 18.
    Shoji, O., Fujishiro, T., Nakajima, H., Kim, M., Nagano, S., Shiro, Y., Watanabe, Y.: Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450(BS beta). Angew. Chem. Int. Ed. 46, 3656–3659 (2007)CrossRefGoogle Scholar
  19. 19.
    Zilly, F.E., Acevedo, J.P., Augustyniak, W., Deege, A., Reetz, M.T.: Tuning a P450 enzyme for methane oxidation. Angew. Chem. Int. Ed. 50, 2720–2724 (2011)CrossRefGoogle Scholar
  20. 20.
    Chen, M.M., Coelho, P.S., Arnold, F.H.: Utilizing terminal oxidants to achieve P450-catalyzed oxidation of methane. Adv. Synth. Catal. 354, 964–968 (2012)CrossRefGoogle Scholar
  21. 21.
    Meinhold, P., Peters, M.W., Chen, M.M.Y., Takahashi, K., Arnold, F.H.: Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chem. Biol. Chem. 6, 1765–1768 (2005)CrossRefGoogle Scholar
  22. 22.
    Xu, F., Bell, S.G., Lednik, J., Insley, A., Rao, Z., Wong, L.L.: The heme monooxygenase cytochrome P450cam can be engineered to oxidize ethane to ethanol. Angew. Chem. Int. Ed. 44, 4029–4032 (2005)CrossRefGoogle Scholar
  23. 23.
    Kawakami, N., Shoji, O., Watanabe, Y.: Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450BM3 containing perfluorocarboxylic acids as decoy molecules. Chem. Sci. (2013)Google Scholar
  24. 24.
    Fraire, Picard: C.: Ticlopidine hydrochloride: relationship between dose, kinetics, plasma concentration and effect on platelet function. Thromb. Res. 30, 119–128 (1983)CrossRefGoogle Scholar
  25. 25.
    Holmes, M.V., Perel, P., Shah, T., Hingorani, A.D., Casas, J.P.: CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA-J. Am. Med. Assoc. 306, 2704–2714 (2011)CrossRefGoogle Scholar
  26. 26.
    Hamman, M.A., Thompson, G.A., Hall, S.D.: Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem. Pharmocol. 54, 33–41 (1997)CrossRefGoogle Scholar
  27. 27.
    Bull, S., Catalani, P., Garle, M., Coecke, S., Clothier, R.: Imipramine for cytochrome P450 activity determination: a multiple-species metabolic probe. Toxicol. In Vitro 13, 537–541 (1999)CrossRefGoogle Scholar
  28. 28.
    Perez, D.I., Grau, M.M., Arends, I.W.C.E., Hollmann, F.: Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem. Comm. 6848–6850 (2009)Google Scholar
  29. 29.
    Churakova, E., Kluge, M., Ullrich, R., Arends, I., Hofrichter, M., Hollmann, F.: Specific photobiocatalytic oxyfunctionalization reactions. Angew. Chem. Int. Ed. 50, 10716–10719 (2011)CrossRefGoogle Scholar
  30. 30.
    Ullrich, R., Nuske, J., Scheibner, K., Spantzel, J., Hofrichter, M.: Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70, 4575–4581 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.PhiladelphiaUSA

Personalised recommendations