Skip to main content

The Use of Biogas in MCFCs and SOFCs Technology: Adsorption Processes and Adsorbent Materials for Removal of Noxious Compounds

  • Chapter
  • First Online:
Treatment of Biogas for Feeding High Temperature Fuel Cells

Part of the book series: Green Energy and Technology ((GREEN))

  • 878 Accesses

Abstract

Fuel cells are highly efficient and very low emissions power generation systems. The molten carbonate (MCFCs) and solid oxide fuel cells (SOFCs) are emerging in the field of stationary power production as a true alternative to combustion heat engines for the production of electrical power, cogeneration, and tri-generation. They can be fed with different kinds of fuels including biogas. This chapter illustrates the characteristic of biogas depending on the different substrates used in anaerobic digestion process. The processes for upgrading the biogas to biomethane are also treated describing the methodologies to removal several compounds, such as air, O2, water, and CO2. This chapter reviews the techniques for H2S removal (the most abundant harmful compound) during digestion and after digestion. Particular attention is given to the adsorption process for removal of sulphur compounds and siloxanes, describing in detail the adsorbing material proposed in literature, such as activate carbons and zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evers AA (2003) Go to where the market is! Challenges and opportunities to bring fuel cells to the international market. Int J Hydrogen Energy 28:725–733

    Article  Google Scholar 

  2. http://www.fch.europa.eu/access. Accessed 20 Oct 2015

  3. http://www.verticale.net/un-centro-di-competenza-permanente-per-7463. Accessed 20 Oct 2015

  4. http://www.now-gmbh.de/en/about-now/funding-programmes/national-innovation-programme-nip.html. Accessed 20 Oct 2015

  5. http://www.iphe.net/partners/republicofkorea.html. Accessed 20 Oct 2015

  6. http://www.iphe.net/partners/japan.html. Accessed 20 Oct 2015

  7. http://www.iphe.net/partners/china/research.html. Accessed 20 Oct 2015

  8. http://www.hydrogen.energy.gov/access. Accessed 20 Oct 2015

  9. Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969

    Article  Google Scholar 

  10. Bensaid S, Specchia S, Federici F, Saracco G, Specchia V (2009) MCFC-based marine APU: comparison between conventional ATR and cracking coupled with SR integrated inside the stack pressurized vessel. Int J Hydrogen Energy 34:2026–2042

    Article  Google Scholar 

  11. European Environment Agency (2005) Climate change and a European low-carbon energy system. Report 1/2005. EEA (European Environment Agency) and OPOCE (Office for Official Publications of the European Communities)

    Google Scholar 

  12. Feige AK (2007) Effect of the growing bioenergy market on the availability of agricultural raw materials and products. Zuckerindustrie 132:687–693

    Google Scholar 

  13. Petterson A, Wellinger, A Biogas upgrading—developments and innovations. IEA Bioenergy. www.iea-biogas.net/publicationspublic.htm

  14. Ribeiro RP, Sauer TP, Lopes FV, Moreira RF, Grande CA, Rodrigues AE (2008) Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith. J Chem Eng 53:2311–2317

    Google Scholar 

  15. Hernandez S, Scarpa F, Fino D, Conti R (2011) Biogas purification for MCFC application. Int J Hydrogen Energy 36:8112–8118

    Article  Google Scholar 

  16. Fangmark IE, Hammarstrom LG, Stromqvist ME, Ness AL, Norman PR, Osmond NM (2002) Estimation of activated carbon adsorption efficiency for organic vapours I. A strategy for selecting test compounds. Carbon 40:2861–2869

    Article  Google Scholar 

  17. Andriani D, Wresta A, Atmaja TD, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928

    Article  Google Scholar 

  18. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  Google Scholar 

  19. Wheless E, Pierce J (2004) Siloxanes in landfill and digester gasupdate. Los Angeles Country Sanitation Districts andSCS Energy, Whittier (Canada) and Long Beach (California)

    Google Scholar 

  20. Tjaden B, Gandiglio M, Lanzini A, Santarelli M, Jarvinen M (2014) Small-scale biogas-SOFC plant: technical analysis and assessment of different fuel reforming options. Energy Fuels 28:4216–4232

    Article  Google Scholar 

  21. Wolak F (2012) Fuel cell power plants: biofuel case study—Tulare, CA. In: DOE-NREL Workshop, Golden, Colorado, June11−13. http://www1.eere.energy.gov/hydrogenandfuelcells/wkshp_biogas_fuel_cells.html

  22. Van Herle J, Marechal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131:127–141

    Article  Google Scholar 

  23. Trendewicz A, Braun R (2013) Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. J Power Sources 233:380–393

    Article  Google Scholar 

  24. Arnold M (2009) Reduction and monitoring of biogas trace compounds. VTT Research Notes 2496, VTT Technical Research Centre of Finland, Espoo, Finland (2009)

    Google Scholar 

  25. Pfeifer T, Nousch L, Lieftink D, Modena S (2013) System design and process layout for a SOFC micro-CHP unit with reduced operating temperatures. Int J Hydrogen Energy 38:431–439

    Article  Google Scholar 

  26. Du W, Parker W (2012) Modeling volatile organic sulphur compounds in mesophilic and thermophilic anaerobic digestion of methionine. Water Res 46:539–546

    Article  Google Scholar 

  27. Vassilev S, Baxter D, Andersen L, Vassileva C (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  Google Scholar 

  28. Sklorz M, Schnelle-Kreis J, Gottlieb A, Kuhner N, Schmid B (2003) Untersuchungen zum Einsatz von Oxidationskatalysatoren an landwirtschaftlichen Biogas-Verbrennungsmotoren. Bayerisches Institut fur Angewandte Umweltforschung und –technik, Augsburg, Germany (2003)

    Google Scholar 

  29. Papurello D, Soukoulis C, Schuhfried E, Cappellin L, Gasperi F, Silvestri S, Santarelli M, Biasioli F (2012) Monitoring of volatile compound emissions during dry anaerobic digestion of the organic fraction of municipal solid waste by proton transfer reaction time-offlight mass spectrometry. Bioresour Technol 126:254–265

    Article  Google Scholar 

  30. Papadias D, Ahmed S, Kumar R (2012) Fuel quality issues with biogas energy—An economic analysis for a stationary fuel cell system. Energy 44:257–277

    Article  Google Scholar 

  31. Rasmussen JFB, Hagen A, Thyden K (2011) Durability of solid oxide fuel cells using sulfur containing fuels. J Power Sources 196:7271–7276

    Article  Google Scholar 

  32. Cheng Z, Wang JH, Choi Y, Yang L, Lin MC, Liu M (2011) From Ni–YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ Sci 4:4380–4409

    Article  Google Scholar 

  33. Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ (2013) High-rate biogas production from waste textiles using two-stage process. Renew Energy 52:128–135

    Article  Google Scholar 

  34. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  Google Scholar 

  35. Persson M (2003) Utvardering av uppgraderingstekniker for biogas, 85 pp. Report SGC 142, Svenskt Gastekniskt Center, Malmo, Sweden, Nov 2003

    Google Scholar 

  36. Iovane P, Nanna F, Ding Y, Bikson B, Molino A (2014) Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel 135:352–358

    Article  Google Scholar 

  37. Schomaker, AHHM, Boerboom AAM, Visser A, Pfeifer AE (2000) Anaerobic digestion of agro-industrial wastes: information networks e technical summary on gas treatment. AD-NETT, Nijmegen, Nederland, Report No.: FAIR-CT 96-2083 (DG12-SSMI)31 Aug 2000

    Google Scholar 

  38. Bteuten S, Pasel C, Luckas M, Bathen D (2013) Trace level adsorption of toxic sulfur compounds, carbon dioxide, and water from methane. J. Chemical Engineering 58:2465–2473

    Google Scholar 

  39. Ferreira D, Magalhaes R, Taveira P, Mendes A (2011) Effective adsorption equilibrium isotherms and breakthroughs of water vapor and carbon dioxide on different adsorbents. Ind Eng Chemist Res 50:10201–10210

    Article  Google Scholar 

  40. Li G, Xiao P, Webley PA, Zhang J, Singh R (2009) Competition of CO2/H2O in adsorption based CO2 capture. Energy Procedia 1:1123–1130

    Article  Google Scholar 

  41. Iwai Y, Oka N, Yamanishi T (2009) Influence of framework silica-to-alumina ratio on the water adsorption and desorption characteristics of MHI-CaX/CaY zeolite. J Phys Chemist Solids 70:881–888

    Article  Google Scholar 

  42. Ribeiro AM, Sauer TP, Grande CA, Moreira RFPM, Loureiro JM, Rodrigues AE (2008) Adsorption equilibrium and kinetics of water vapor on different adsorbents. Ind Eng Chem Res 47:7019–7026

    Article  Google Scholar 

  43. Lee YC, Weng LC, Tseng PC, Wang CC (2015) Effect of pressure on the moisture adsorption of silica gel and zeolite 13X adsorbents. Heat Mass Transf 51:441–447

    Article  Google Scholar 

  44. Ozensoy E, Szanyi J, Peden CHF (2005) Interaction of water with ordered θ-Al2O3 ultrathin films grown on NiAl(100). J Phys Chemist B 109:3431–343

    Google Scholar 

  45. Kittaka S, Yamaguchi K, Takahara S (2012) High physisorption affinity of water molecules to the hydroxylated aluminum oxide (0 0 1) surface. J Colloid Interface Sci 368:552–557

    Article  Google Scholar 

  46. Wellinger A, Lindberg A (2005) Biogas upgrading and utilisation. IEA Bioenergy Task 24: Energy From Biological Conversion of Organic Waste (2005)

    Google Scholar 

  47. Krich K, Augenstein A, Batmale J, Benemann J, Rutledge B, Salour D (2005) Upgrading dairy biogas to biomethane and other fuels. In: Andrews K (ed) Biomethane from dairy waste—a sourcebook for the production and use of renewable natural gas in California. Clear Concepts, California, pp 47–69

    Google Scholar 

  48. Jonsson O (2004) Biogas upgrading and use as transport fuel. Swedish Gas Center, Malmo Sweden, 5 pp. Report

    Google Scholar 

  49. Bourque H (2006) Use of liquefied biogas in transport sector. In: Conference sur les credits CO2 et la valorisation du biogaz, 20 Apr 2006. www.apcas.qc.ca

  50. Enggas. Gilbertsville: Engineered Gas Systems. Worldwide Inc. (2003). November 2007. http://www.enggas.com

  51. Gomes VG, Hassan MM (2001) Coalseam methane recovery by vacuum swing adsorption. Separ Purif Technol 24:189–196

    Article  Google Scholar 

  52. Welink JH, Dumont M, Kwant K (2014) Groen Gas: Gas van aardgaskwaliteit uit biomassa: update van de studie uit, Jan 2007, Senternovem, Nederland 2004, 34 p [Report]

    Google Scholar 

  53. Kim TJ, Li B, Hagg MB (2004) Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci, Part B Polym Phys 42:4326–4336

    Article  Google Scholar 

  54. Roks MFM, Luning L, Coops O (1997) Feasibility of applying new membrane for processing landfill gas to natural gas quality at low pressure (8 bar) [Haalbaarheid toepassing nieuw membraan voor opwerking stortgas naar aardgaskwaliteit bij lage druk (8 bar)]. Aquilo Gas Separation bv, Nederland, 57 p. Report

    Google Scholar 

  55. Guha AK, Majumdar S, Sirkar KK (1992) Gas separation Modes in a hollow fiber contained liquid membrane permeator. Ind Eng Chem Res 31:593–604

    Article  Google Scholar 

  56. Esteves IAAC, Mota JPB (2002) Simulation of a new hybrid membrane/pressure swing adsorption process for gas separation. Desalination 148:275–280

    Article  Google Scholar 

  57. Strevett KA, Vieth RF, Grasso D (1995) Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem Eng J Biochem Eng J 58:71–79

    Article  Google Scholar 

  58. Persson M (2003) Evaluation of upgrading techniques for biogas. School of Environmental Engineering, Lund. http://www.sgc.se/dokument/Evaluation.pdf

  59. Tynell A (2005) Microbial growth on pall-rings—A problem when upgrading biogas with the technique absorption with water wash. Svenska Biogas for eningen and Swedish Gas Center, Stockholm, Sweden, 53 p. Report No.: 610408

    Google Scholar 

  60. Rutledge B (2005) California biogas industry assessment white paper. WestStart-Calstart, Pasadena, USA, 38 p. Report

    Google Scholar 

  61. Miltner M, Makaruk A, Harasek M (2008) Application of gas permeation for biogas upgrade—operational experiences of feeding biomethane into the Austrian gas grid. In: 16th European biomass conference and exhibition. Valencia, Spain, pp. 1905–1911

    Google Scholar 

  62. Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74:83–92

    Article  Google Scholar 

  63. Di Natale F, Erto A, Lancia A, Musmarra D (2009) A descriptive model for metallic ions adsorption from aqueous solutions onto activated carbons. J Hazard Mater 169:360–369

    Article  Google Scholar 

  64. Schell WJ, Houston CD (1983) Use of membranes for biogas treatment. Energy Prog 3:96–100

    Google Scholar 

  65. Roehr M, Wimmerstedt R (1990) A comparison of two commercial membranes used for biogas upgrading. Desalination 77:331–345

    Article  Google Scholar 

  66. Rautenbach R, Welsch K (1993) Treatment of landfill gas by gas permeation—pilot plant results and comparison to alternatives. Desalination 90:193–207

    Article  Google Scholar 

  67. Favre E, Bounaceur R, Roizard D (2009) Biogas, membranes and carbon dioxide. J Membr Sci 328:11–14

    Article  Google Scholar 

  68. Sridhar S, Smitha B, Aminabhavi TM (2007) Separation of carbon dioxide from natural gas mixtures through polymeric membranes: a review. Membrane separations division, center of excellence in polymer science, Karnatak University—India. Sep Purif Rev 36:113–174

    Article  Google Scholar 

  69. Stern SA, Krishnakumar B, Charati SG, Amato WS, Friedman AA, Fuess DJ (1998) Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant. J Membr Sci 151:63–74

    Article  Google Scholar 

  70. Bhide BD, Stern SA (1993) Membrane processes for the removal of acid gases from natural gas. Process configurations and optimization of operatine conditions. J Membr Sci 81:209–237

    Article  Google Scholar 

  71. Bhide BD, Stern SA (1993) Membrane processes for the removal of acid gases from natural gas. II. Effects of operating conditions, economic parameters, and membrane properties. J Membr Sci 81:239–252

    Article  Google Scholar 

  72. Hao J, Rice PA, Stern SA (2002) Upgrading low-quality natural gas with H2S- and CO2- selective polymer membranes: Part I. Process design and economics of membrane stages without recycle streams. J Membr Sci 209:177–206

    Article  Google Scholar 

  73. Hao J, Rice PA, Stern SA (2008) Upgrading low-quality natural gas with H2S- and CO2- selective polymer membranes: Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams. J Membr Sci 320:108–122

    Article  Google Scholar 

  74. Persson M, Jönsson O (2006) Wellinger “Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy Task 37—Energy from biogas and landfill gas. Sweden & Switzerland. www.iea-biogas.net

  75. Miltner M, Makaruk A, Krischan J, Harasek M (2012) Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: potentials and economics. Water Sci Technol 66:1354–1360

    Article  Google Scholar 

  76. Baker WR, Lokhandawa K (2008) Natural gas processing with membranes: an overview. Membrane Technology and Research, Inc. 1360 Willow Road, Suite 103, Menlo Park, California 94025. Inf Eng Chem Res 47:2109–2121

    Article  Google Scholar 

  77. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    Article  Google Scholar 

  78. Bhide BD, Voskericyan A, Stern SA (1998) Hybrid processes for the removal of acid gases from natural gas. J Membr Sci 140:1–7

    Article  Google Scholar 

  79. Hagen M, Polman E, Jensen J, Myken A, Jonsson O, Dahl A (2001) Adding gas from biomass to the gas grid. Swedish Gas Center, Malmo Sweden, July 2001, pp 144. Report SCG 118

    Google Scholar 

  80. Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geissen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    Article  Google Scholar 

  81. Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109:2729–2736

    Article  Google Scholar 

  82. Tsang YF, Wang L, Chua H (2015) Simultaneous hydrogen sulfide and ammonia removal in a biotrickling filter: crossed inhibitory effects among selected pollutants and microbial community change. Chem Eng J 281:389–396

    Article  Google Scholar 

  83. Liu C, Zhao D, Yan L, Wang A, Gu Y, Lee DJ (2015) Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Biores Technol 191:332–336

    Article  Google Scholar 

  84. Xu G, Peng J, Feng C, Fang F, Chen S, Xu Y, Wang X (2015) Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis. Appl Microbiol Biotechnol 99:6527–6536

    Article  Google Scholar 

  85. Mora M, Dorado AD, Gamisans X, Gabriel D (2015) Investigating the kinetics of autotrophic denitrification with thiosulfate: modeling the denitritation mechanisms and the effect of the acclimation of SO-NR cultures to nitrite. Chem Eng J 262:235–241

    Article  Google Scholar 

  86. Robinson PJ, Luyben WL (2010) Integrated gasification combined cycle dynamic model: H2S absorption/stripping, water-gas shift reactors, and CO2 absorption/stripping. Ind Eng Chem Res 49:4766–4781

    Article  Google Scholar 

  87. Huang X, Zhu D (2004) Review of technologies for removal of H2S. Huaxue Gongye Yu Gongcheng Jishu 25:47–49

    MathSciNet  Google Scholar 

  88. Hix R, Marshall LS (1990) Reactive absorption of hydrogen sulfide by a solution of sulfur dioxide in polyglycol ether. Preprints of Papers—Am Chem Soc, Division of Fuel, Chem 35:128–135

    Google Scholar 

  89. Park D, Lee DS, Joung JY, Park JM (2005) Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria. Process Biochem 40:1461–1467

    Article  Google Scholar 

  90. Nasr MRJ, Abedinzadegan M (1995) Performance of a venturi jet scrubber for H2S removal by iron-complex solution. Chem Eng Technol 18:166–170

    Article  Google Scholar 

  91. Horikawa MS, Rossi F, Gimenes ML, Costa CMM, da Silva MGC (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21:415–422

    Article  Google Scholar 

  92. Belmabkhout Y, De Weireld G, Sayari A (2009) Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25:13275–13278

    Article  Google Scholar 

  93. Chang M, Tseng T (1996) Gas-phase removal of H2S and NH3 with dielectric barrier discharges. J Environ Eng 122:41–46

    Article  Google Scholar 

  94. Duan H, Yan R, Koe LCC, Wang X (2007) Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration. Chemosphere 66:1684–1691

    Article  Google Scholar 

  95. Ho KL, Chung YC, Lin YH, Tseng CP (2008) Microbial populations analysis and field application of biofilter for the removal of volatile-sulfur compounds from swine wastewater treatment system. J Hazard Mater 152:580–588

    Article  Google Scholar 

  96. Lee EY, Lee NY, Cho KS, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101:309–314

    Article  Google Scholar 

  97. González-Sánchez A, Revah S, Deshusses MA (2008) Alkaline biofiltration of H2S odors. Environ Sci Technol 42:7398–7404

    Article  Google Scholar 

  98. Jiang X, Yan R, Tay JH (2009) Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75:1350–1355

    Article  Google Scholar 

  99. Montebello AM, Fernández M, Almenglo F, Ramírez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200–202:237–246

    Article  Google Scholar 

  100. Fortuny M, Baeza JA, Deshusses MA, Gamisans X, Casas C, Lafuente J, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71:10–17

    Article  Google Scholar 

  101. Fernández M, Ramírez M, Perez RM, Rovira R, Gabriel D, Gomez JM, Cantero D (2010) Hydrogen sulfide removal from biogas using biofiltration under anoxic conditions. In: Proceedings of the 2010 Duke-UAM Conference on Biofiltration, CD-ROM, Washington, USA (2010)

    Google Scholar 

  102. Gabriel D (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci 100:6308–6312

    Article  Google Scholar 

  103. Kim JH, Rene ER, Park HS (2008) Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter. Bioresour Technol 99:583–588

    Article  Google Scholar 

  104. Goncalves JJ, Govind R (2009) Enhanced biofiltration using cell attachment promoters. Environ Sci Technol 43:1049–1054

    Article  Google Scholar 

  105. Ryu HW, Yoo SK, Choi JM, Cho KS, Cha DK (2009) Thermophilic biofiltration of H2S and isolation of a thermophilic and heterotrophic H2S-degrading bacterium, Bacillus sp. TSO3. J Hazard Mater 168:501–506

    Article  Google Scholar 

  106. Ramírez M, Fernández M, Granada C, Le Borgne S, Gómez JM, Cantero D (2011) Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour Technol 102:4047–4053

    Article  Google Scholar 

  107. Ho KL, Lin WC, Chung YC, Chen YP, Tseng CP (2013) Elimination of high concentration hydrogen sulfide and biogas purification by chemical-biological process. Chemosphere 92:1396–1401

    Article  Google Scholar 

  108. Giro MEA, Garcia O Jr, Zaiat M (2006) Immobilized cells of Acidithiobacillus ferrooxidans in PVC strands and sulfite removal in a pilot-scale bioreactor. Chem Eng J 28:201–207

    Google Scholar 

  109. Alemzadeh I, Kahrizi E, Vossoughi M (2009) Bio-oxidation of ferrous ions by Acidithioobacillus ferrooxidans in a monolithic bioreactor. J Chem Technol Biotechnol 84:504–510

    Article  Google Scholar 

  110. Asai S, Konishi Y, Yabu T (1990) Kinetics of absorption of hydrogen sulfide into aqueous ferric sulfate solutions. AIChE J 36:1331–1338

    Article  Google Scholar 

  111. Ebrahimi S, Kleerebezem R, van Loosdrecht M, Heijnen J (2003) Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions. Chem Eng Sci 58:417–427

    Article  Google Scholar 

  112. Mousavi SM, Yaghmaei S, Vossoughi M, Roostaazad R, Jafari A, Ebrahimi M, Chabok OH, Turunen I (2008) The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresour Technol 99:2840–2845

    Article  Google Scholar 

  113. Chung YC, Ho KL, Tseng CP (2003) Hydrogen sulfide gas treatment by a chemical–biological process: chemical absorption and biological oxidation steps. J Environ Sci Health, Part B 38:663–679

    Article  Google Scholar 

  114. Chung YC, Ho KL, Tseng CP (2006) Treatment of high H2S concentrations by chemical absorption and biological oxidation process. Environ Eng Sci 23:942–953

    Article  Google Scholar 

  115. Mesa M, Andrades J, Macias M, Cantero D (2004) Biological oxidation of ferrous iron: study of bioreactor efficiency. J Chem Technol Biotechnol 79:163–170

    Article  Google Scholar 

  116. Pinjing H, Liming S, Zhiwen Y, Guojian L (2001) Removal of hydrogen sulfide and methyl mercaptan by a packed tower with immobilized micro-organism beads. Water Sci Technol 44:327–333

    Google Scholar 

  117. Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207

    Article  Google Scholar 

  118. Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Investigation on the use of nitrified wastewater for the steady-state operation of a biotrickling filter for the removal of hydrogen sulfide in biogas. J Environ Eng Sci 7:543–552

    Article  Google Scholar 

  119. Manconi I, Carucci A, Lens P, Rossetti S (2006) Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system. Water Sci Technol 53:91–99

    Article  Google Scholar 

  120. Bentley R, Chasteen TG (2004) Environmental VOSCs—formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 55:291–317

    Article  Google Scholar 

  121. Sipma J, Svitelskaya A, van der Mark B, Hulstoff Pol LW, Lettinga G, Buisman CJN, Janssen AJH (2004) Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols. Water Res 38:4331–4340

    Article  Google Scholar 

  122. van Leerdam RC, Bonilla-Salinas M, de Bok FAM, Bruning H, Lens PNL, Stams AJM, Janssen AJH (2008) Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization. Biotechnol Bioeng 101:691–701

    Article  Google Scholar 

  123. van Leerdam RC, van den Bosch PLF, Lens PNL, Janssen AJH (2011) Reactions between methanethiol and biologically produced sulfur particles. Environ Sci Technol 45:1320–1326

    Article  Google Scholar 

  124. van den Bosch PLF, de Graaff M, Fortuny-Picornell M, van Leerdam RC, Janssen AJH (2009) Inhibition of microbiological sulfide oxidation by methanethiol and dimethyl polysulfides at natron-alkaline conditions. Appl Microbiol Biotechnol 83:579–587

    Article  Google Scholar 

  125. Goyal R, Babu V, Patel GK (2014) Biomethane production. In: Babu V, Thapliyal A, Patel, GK (eds) Biofuels production, pp 333–356

    Google Scholar 

  126. Krich K, Augenstein D, Batmale J, Benemann J, Rutledge B, Salour D (2005) Biomethane from dairy waste: a sourcebook for the production and use of renewable natural gas in California. California, Western United Dairymen

    Google Scholar 

  127. Rasi S, Lantela J, Rintala J (2011) Trace compounds affecting biogas energy utilisation—A review. Energy Convers Manage 52:3369–3375

    Article  Google Scholar 

  128. Papurello D, Schuhfried E, Lanzini A, Romano A, Cappellin L, Mark T, Silvestri S, Biasioli F (2014) Influence of co-vapors on biogas filtration for fuel cells monitored with PTR-MS (Proton Transfer Reaction-Mass Spectrometry). Fuel Process Technol 118:133–140

    Article  Google Scholar 

  129. Salminen E, Rintala J, H¨ark¨onen J, Kuitunen M, Hogmander H, Oikari A (2001) Anaerobically digested poultry slaughterhouse wastes as fertilizer in agriculture. Bioresour Technol 78:81–88

    Article  Google Scholar 

  130. Woli KR, Nagumo T, Kuramochi K, Hatano R (2004) Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Sci Total Environ 329:61–74

    Article  Google Scholar 

  131. Li XZ, Zhao QL (1999) Inhibition of microbial activity of activated sludge by ammonia in leachate. Environ Int 25:961–968

    Article  Google Scholar 

  132. Battistoni P, Fava G, Pavan P, Musacco A, Cecchi F (1997) Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results. Water Res 31:2925–2929

    Article  Google Scholar 

  133. Bouwer H, Chaney RL (1974) Land treatment of wastewater. Adv Agron 26:133–176

    Article  Google Scholar 

  134. Meinhold J, Pedersen H, Arnold E, Issacs S, Henze M (1998) Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphate removal. Water Sci Technol 38:97–105

    Article  Google Scholar 

  135. Bonmati A, Flotats X (2003) Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manage 23:261–272

    Article  Google Scholar 

  136. Liao PH, Chen A, Lo KV (1995) Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour Technol 54:17–20

    Article  Google Scholar 

  137. Cheung KC, Chu LM, Wong MH (1997) Ammonia stripping as a pretreatment for landfill leachate. Water Air Soil Pollut 94:209–220

    Google Scholar 

  138. Minocha VK, Prabhakar AVS (1988) Ammonia removal and recovery from urea fertilizer plant waste. Environ Technol Lett 9:655–664

    Article  Google Scholar 

  139. Lei X, Sugiura N, Feng C, Maekawa T (2007) Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. J Hazard Mater 145:391–397

    Article  Google Scholar 

  140. Esteves IAAC, Lopes MSS, Nunes PMC, Mota JPB (2008) Adsorption of natural gas and biogas components on activated carbon. Sep Purif Technol 62:281–296

    Article  Google Scholar 

  141. Hernandez SP, Chiappero M, Russo N, Fino D (2011) A novel ZnO-based adsorbent for biogas purification in H2 production systems. Chem Eng J 176–177:272–279

    Article  Google Scholar 

  142. Chang FT (2010) Apparatus and method for purification of sulfur-containing waste gas and methane recovery from biogas. Faming Zhuanli Shenqing. CN 101884870 A 20101117

    Google Scholar 

  143. Sakanishi K, Matsumura A, Saito I, Hanaoka T, Minowa T, Tomoaki (2004) Removal of hydrogen sulfide and carbonyl sulfide for purification of biomass-gasified synthetic gas using active carbons. Prepr Symp-Am Chem Soc, Div Fuel Chem 49:580–581

    Google Scholar 

  144. Richter E, Henning KD, Knoblauch K, Juntgen H (1985) Utilization of activated carbon and carbon molecular sieves in biogas purification and methane recovery. Comm Eur Communities, [Rep.] EUR, (EUR 10024, Energy Biomass), pp 621–624

    Google Scholar 

  145. Shi L, Yang K, Zhao Q, Wang H, Cui Q (2015) Characterization and mechanisms of H2S and SO2 adsorption by activated carbon. Energy Fuels. Ahead of Print

    Google Scholar 

  146. Phooratsamee W, Hussaro K, Teekasap S, Hirunlabh J (2014) Increasing adsorption of activated carbon from palm oil shell for adsorb H2S from biogas production by impregnation. Am J Env Sci 10:431–445

    Article  Google Scholar 

  147. Aslam Z, Shawabkeh RA, Hussein IA, Al-Baghli N, Eic M (2015) Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Appl Surf Sci 327:107–115

    Google Scholar 

  148. Sisani E, Cinti G, Discepoli G, Penchini D, Desideri U, Marmottini F (2014) Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems. Int J Hydrogen Energy 39:21753–21766.|

    Google Scholar 

  149. Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: new adsorbing materials. Int J Hydrogen Energy 39:1783–1787

    Article  Google Scholar 

  150. Liang M, Zhang C, Zheng H (2014) The removal of H2S derived from livestock farm on activated carbon modified by combinatory method of high-pressure hydrothermal method and impregnation method. Adsorption 20:525–531

    Article  Google Scholar 

  151. An H, Zhao D, Zhao C, Xue J, Li X, Xiuling (2011) Study on removal of H2S by modified ACF with impregnation of transition metal. Huanjing Gongcheng Xuebao 5:1581–1585

    Google Scholar 

  152. Huang CC, Chen CH (2013) Dynamic adsorption model of H2S in a fixed bed of copper impregnated activated carbon. Separation Sci Technol 48:148–155

    Article  Google Scholar 

  153. Monteleone G, De Francesco M, Galli S, Marchetti M, Naticchioni V (2011) Deep H2S removal from biogas for molten carbonate fuel cell (MCFC) systems. Chem Eng J 173:407–414

    Article  Google Scholar 

  154. Yan B, Jiang W, Li F, Liu L (2010) Study on adsorbents from sewage sludge to removal of NH3 and H2S. Harbin Shangye Daxue Xuebao, Ziran Kexueban 26:662–666

    Google Scholar 

  155. Polster A, Brummack J (2009) Desulfurization in biogas plants. VDI-Berichte 2057 (Biogas 2009), pp 185–193

    Google Scholar 

  156. Shah M, Tsapatsis M, Siepmann JI, Ilja J (2015) Monte carlo simulations probing the adsorptive separation of hydrogen sulfide/methane mixtures using all-silica zeolites. Langmuir. Ahead of Print

    Google Scholar 

  157. Liu C, Zhang R, Wei S, Wang J, Liu Y, Li M, Liu R, Rutao (2015) Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157:183–190

    Article  Google Scholar 

  158. Yazdanbakhsh F, Blasing M, Sawada JA, Rezaei S, Muller M, Baumann S, Kuznicki SM (2014) Copper Exchanged Nanotitanate for High Temperature H2S Adsorption. Ind Eng Chem Res 53:11734–11739

    Article  Google Scholar 

  159. Izumi J, Wang H (2010) Methane recovery and purification from biogasses using vacuum pressure swing adsorption. In: Pacifichem 2010, International Chemical Congress of Pacific Basin Societies, Honolulu, HI, United States, AETECH-264, Dec 15–20 2010

    Google Scholar 

  160. Cosoli P, Ferrone M, Pricl S, Fermeglia M (2008) Hydrogen sulfide removal from biogas by zeolite adsorption. Part II. MD simulations. Chem Eng J 145:93–99

    Article  Google Scholar 

  161. Qiu G, Huang B, Wang X, Li X, Xiangtong (2006) Theoretical study of H2S adsorption on HZSM-5 zeolite. Shiyou Yu Tianranqi Huagong 35:107–109

    Google Scholar 

  162. Tomadakis MM, Heck HH, Howell M. Hall, Merilyn (2006) Use of molecular sieves to remove H2S and CO2 from landfill gas, producing a high-energy content methane stream. In: AIChE Spring National Meeting, Conference Proceedings, Orlando, FL, United States, Apr 23–27 2006, P43008/1-P43008/6

    Google Scholar 

  163. Gong J, Jiao YF, Su QQ, Mi WL (2015) Deep removal of carbonyl sulfide in biogas. Gaoxiao Huaxue Gongcheng Xuebao 29:443–451

    Google Scholar 

  164. Liu Y, Guo BB, Zhu YQ (2013) Research progress in desulfurizers. Dangdai Huagong 42:827–829, 840

    Google Scholar 

  165. Sun T, Shen Y, Jia J (2014) Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer. Environ Sci Technol 48:2263–2272

    Google Scholar 

  166. Hyung-Tae K, Seung-Moon K, Ki-Won J, Young-Seek Y, Jin-Hong K (2007) Desulphurisation of odorant-containing gas: removal of t-butylmercaptan on Cu/ZnO/Al2O3. Int J Hydrogen Energy 32:3603–3608

    Article  Google Scholar 

  167. Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34:2164–2171

    Article  Google Scholar 

  168. Li YY, Perera SP, Crittenden BD (1998) Zeolite monoliths for air separation, part 2: oxygen enrichment, pressure drop and pressurization. Trans I Chem E 76:931–941

    Article  Google Scholar 

  169. Gordon Israelson PE (2009) Hydrocarbon condensation heating of natural gas by an activated carbon desulfurizer. J Fuel Cell Sci Technol 6:34506–34518

    Article  Google Scholar 

  170. Gordon Israelson PE (2004) Results of testing various natural gas desulphurisation adsorbents. J Mater Eng Perform 13:282–286

    Article  Google Scholar 

  171. Hernandez S, Solarino L, Orsello G, Russo N, Fino D, Saracco G et al (2008) Desulphurization process for fuel cells systems Int. J. Hydrogen Energy 33:3209–3214

    Article  Google Scholar 

  172. Gordon Israelson PE (2008) Water vapor effects on fuel cell desulfurizer performance—a decade of field experience. In: Proceedings of Fuel Cell 200 Sixth Int Fuel Cell Science Eng Tech; Conference Denver, Colorado, USA

    Google Scholar 

  173. Yang RT, Hernandez-Maldonado AJ, Yang FH (2003) Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301:79–81

    Article  Google Scholar 

  174. Hernandez-Maldonado AJ, Yang RT (2003) Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)−Y zeolites. Ind Eng Chem Res 42:3103–3110

    Article  Google Scholar 

  175. Velu S, Song CS, Engelhard MH, Chin YH (2005) Adsorptive removal of organic sulfur compounds from jet fuel over K-exchanged NiY zeolites prepared by impregnation and ion exchange. Ind Eng Chem Res 44:5740–5749

    Article  Google Scholar 

  176. Ko CH, Song HI, Park JH, Han SS, Kim JN (2007) Selective removal of sulfur compounds in city-gas by adsorbents. Korean J Chem Eng 24:1124–1127

    Article  Google Scholar 

  177. Zhang ZY, Shi TB, Jia CZ, Ji WJ, Chen Y, He MY (2008) Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. Appl Catal B 82:1–10

    Article  Google Scholar 

  178. Xue M, Chitrakar R, Sakane K, Hirotsu T, Ooi K, Yoshimura Y, Toba M, Feng Q (2006) Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. J Colloid Interface Sci 298:535–542

    Article  Google Scholar 

  179. Lam KF, Yeung KL, Mckay G (2006) An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents. J Phys Chem B 110:2187–2194

    Article  Google Scholar 

  180. Lam KF, Yeung KL, Mckay G (2006) A rational approach in the design of selective mesoporous adsorbents. Langmuir 22:9632–9641

    Article  Google Scholar 

  181. Lam KF, Fong CM, Yeung KL (2007) Separation of precious metals using selective mesoporous adsorbents. Gold Bull. 40:192–198

    Article  Google Scholar 

  182. Lam KF, Yeung KL, Mckay G (2007) Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environ Sci Technol 41:3329–3334

    Article  Google Scholar 

  183. Parida KM, Dash SK (2010) Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantine. J Hazard Mater 179:642–649

    Article  Google Scholar 

  184. Arruebo M, Ho WY, Lam KF, Chen XG, Arbiol J, Santamaria J, Yeung KL (2008) Preparation of magnetic nanoparticles encapsulated by an ultrathin silica shell via transformation of magnetic Fe-MCM-41. Chem Mater 20:486–493

    Article  Google Scholar 

  185. Lam KF, Chen XQ, Mckay G, Yeung KL (2008) Anion effect on Cu2+ Adsorption on NH2-MCM-41. Ind Eng Chem Res 47:9376–9383

    Article  Google Scholar 

  186. Lam KF, Fong CM, Yeung KL, Mckay G (2008) Selective adsorption of gold from complex mixtures using mesoporous adsorbents. Chem Eng J 145:185–195

    Article  Google Scholar 

  187. Lam KF, Chen XQ, Fong CM, Yeung KL (2008) Selective mesoporous adsorbents for Ag+/Cu2+ separation. Chem Commun 17:2034–2036

    Article  Google Scholar 

  188. Chen XQ, Lam KF, Zhang QJ, Pan BC, Arruebo M, Yeung KL (2009) Synthesis of highly selective magnetic mesoporous adsorbent. J Phys Chem 113:9804–9813

    Article  Google Scholar 

  189. Wang YH, Yang RT, Heinzel JM (2009) Desulfurization of jet fuel JP-5 light fraction by MCM-41 and SBA-15 supported cuprous oxide for fuel cell applications. Ind Eng Chem Res 48:142–147

    Article  Google Scholar 

  190. Park JG, Ko CH, Yi KB, Park JH, Han SS, Cho SH, Kim JN (2008) Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica. Appl Catal B 81:244–250

    Article  Google Scholar 

  191. Wang Y, Yang RT, Heinzel JM (2008) Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials. Chem Eng Sci 63:356–365

    Article  Google Scholar 

  192. Li WL, Liu QF, Xing JM, Gao HS, Xiong XC, Li YG, Li X, Liu HZ (2007) High-efficiency desulfurization by adsorption with mesoporous aluminosilicates. AIChE J 53:3263–3268

    Article  Google Scholar 

  193. Yang LM, Wang YJ, Huang D, Luo GS, Dai YY (2007) Preparation of high performance adsorbents by functionalizing mesostructured silica spheres for selective adsorption of organosulfur compounds. Ind Eng Chem Res 46:579–583

    Article  Google Scholar 

  194. Yin Y, Jiang WJ, Liu XQ, Li YH, Sun LB (2012) Dispersion of copper species in a confined space and their application in thiophene capture. J Mater Chem 22:18514–18521

    Article  Google Scholar 

  195. Samadi-Maybodi A, Teymouri M, Vahid A, Miranbeigi A (2011) In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent-solute interaction and its activity toward adsorptive desulfurization of gas oil. J Hazard Mater 192:1667–1674

    Article  Google Scholar 

  196. Li WL, Tang H, Zhang T, Li Q, Xing JM, Liu HZ (2010) Ultra-deep desulfurization adsorbents for hydrotreated diesel with magnetic mesoporous aluminosilicates. AIChE J 56:1391–1396

    Google Scholar 

  197. Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910

    Article  Google Scholar 

  198. Xiao FS, Wang LF, Yin CY, Lin KF, Di Y, Li JX, Xu RR, Su DS, Schlogl R, Yokoi T, Tatsumi T (2006) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem Int Ed 45:3090–3093

    Article  Google Scholar 

  199. Wang H, Pinnavaia TJ (2006) MFI zeolite with small and uniform intracrystal mesopores. Angew Chem Int Ed 45:7603–7606

    Article  Google Scholar 

  200. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723

    Article  Google Scholar 

  201. Zhang XY, Liu DX, Xu DD, Asahina S, Cychosz KA, Agrawal KV, Wahedi YA, Bhan A, Hashimi SA, Terasaki O, Thommes M, Tsapatsis M (2012) Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science 336:1684–1687

    Article  Google Scholar 

  202. Tang K, Song LJ, Duan LH, Li XQ, Gui JZ, Sun ZL (2008) Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis. Fuel Process Technol 89:1–6

    Article  Google Scholar 

  203. Jiang M, Ng FTT (2006) Adsorption of benzothiophene on Y zeolites investigated by infrared spectroscopy and flow calorimetry. Catal Today 116:530–536

    Article  Google Scholar 

  204. Jayaraman A, Yang FH, Yang RT (2006) Effects of nitrogen compounds and polyaromatic hydrocarbons on desulfurization of liquid fuels by adsorption via π-complexation with Cu(I)Y Zeolite. Energy Fuels 20:909–914

    Article  Google Scholar 

  205. Hernandez-Maldonado AJ, Yang RT, Cannella W (2004) Desulfurization of commercial jet fuels by adsorption via π-complexation with vapor phase ion exchanged Cu(I)-Y zeolites. Ind Eng Chem Res 43:6142–6149

    Article  Google Scholar 

  206. Hernandez-Maldonado AJ, Yang RT (2004) New sorbents for desulfurization of diesel fuels via π-complexation. AIChE J 50:791–801

    Article  Google Scholar 

  207. Hernandez-Maldonado AJ, Yang RT (2004) Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X- and Y-zeolites. Ind Eng Chem Res 43:1081–1089

    Article  Google Scholar 

  208. Lee J, Beum HT, Ko CH, Park SY, Park JH, Kim JN, Chun BH, Kim SH (2011) Adsorptive removal of dimethyl disulfide in olefin rich C4 with ion-exchanged zeolites. Ind Eng Chem Res 50:6382–6390

    Article  Google Scholar 

  209. Jung GS, Park DH, Lee DH, Lee HC, Hong SB, Woo HC (2010) Adsorptive removal of tert-butylmercaptan and tetrahydrothiophene using microporous molecular sieve ETS-10. Appl Catal 100:264–270

    Article  Google Scholar 

  210. Yeung KL, Han W (2014) Zeolites and mesoporous materials in fuel cell applications. Catal Today 236:182–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Turco .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turco, M., Ausiello, A., Micoli, L. (2016). The Use of Biogas in MCFCs and SOFCs Technology: Adsorption Processes and Adsorbent Materials for Removal of Noxious Compounds. In: Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-03215-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03215-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03214-6

  • Online ISBN: 978-3-319-03215-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics