Skip to main content

Fuel Cells Operating and Structural Features of MCFCs and SOFCs

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter synthetically describes the cell technology. The history of fuel cell technology development is briefly described and a comparison between fuel cells and other devices, such as batteries and heat engines, is provided. The advantages of fuel cell technology are discussed taking into account the sectors of application. This chapter also reports the fundamental principles with particular attention to high-temperature fuel cells (MCFC and SOFC) that are emerging in the field of stationary power production as a true alternative to combustion heat engines. The components (electrodes and electrolyte) and most common materials used for MCFC and SOFC are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dincer I, Zamfirescu C (2014) Advanced power generation systems. In: Chapter 3—Fossil fuels and alternatives, 95–141

    Google Scholar 

  2. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Article  Google Scholar 

  3. Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49

    Article  Google Scholar 

  4. Ball M, Weeda M (2015) The hydrogen economy—Vision or reality? Int J Hydrogen Energy 40:7903–7919

    Article  Google Scholar 

  5. Andrews J, Shabani B (2012) Where does hydrogen fit in a sustainable energy economy? Procedia Eng 49:15–25

    Article  Google Scholar 

  6. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853

    Article  Google Scholar 

  7. Elmer T, Worall M, Wu S, Riffat SB (2015) Fuel cell technology for domestic built environment applications: state of-the-art review. Renew Sustain Energy Rev 42:913–931

    Article  Google Scholar 

  8. Alves HJ, Bley C, Niklevicz RR, Pires Frigo E, Sato Frigo M, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy 38:5215–5225

    Article  Google Scholar 

  9. The Department of Energy hydrogen and fuel cells program plan: an integrated strategic plan for the research, development, and demonstration of hydrogen and fuel cell technologies US Department of Energy (2011)

    Google Scholar 

  10. National Energy Technology Laboratory, U.S. Department of Energy Fuel Cell Handbook 7th ed. Morgantown, 1–35 (2005)

    Google Scholar 

  11. O‘Hayre R, Cha SW, Colella W, Prinz FB (2006) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  12. Carter D, Ryan M, Wing J (2012) The fuel cell industry review 2012. Fuel Cell Today

    Google Scholar 

  13. Larminie J, Dicks A (2003) In: Fuel Cell Systems Explained, 2nd edn, Wiley

    Google Scholar 

  14. Park SY, Kim JW, Lee DH (2011) Development of a market penetration forecasting model for hydrogen fuel cell vehicles considering infrastructure and cost reduction effects. Energy Policy 39:3307–3315

    Article  Google Scholar 

  15. Simons A, Bauer C (2015) A life-cycle perspective on automotive fuel cells. Appl Energy 157:884–896

    Article  Google Scholar 

  16. Hellmana HL, van den Hoedb R (2007) Characterising fuel cell technology: challenges of the commercialisation process. Int J Hydrogen Energy 32:305–315

    Article  Google Scholar 

  17. Wang J (2015) Barriers of scaling-up fuel cells: cost, durability and reliability. Energy 80:509–521

    Article  Google Scholar 

  18. Lewis J (2014) Stationary fuel cells insights into commercialisation. Int J Hydrogen Energy 39:21896–21901

    Article  Google Scholar 

  19. Xianguo L (2006) Principles of fuel cells. Taylor & Francis Group, New York

    Google Scholar 

  20. Cowey K, Green KJ, Mepsted GO, Reeve R (2004) Portable and military fuel cells. Curr Opin Solid State Mater Sci 8:367–371

    Article  Google Scholar 

  21. Patil AS, Dubois TG, Sifer N, Bostic E, Gardner K, Quah M (2004) Portable fuel cell systems for America’s army: technology transition to the field. J Power Sources 136:220–225

    Article  Google Scholar 

  22. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Article  Google Scholar 

  23. Breakthrough Technologies Institute Fuel cell technologies market report US Department of Energy (2011)

    Google Scholar 

  24. Abdullah MO, Yung VC, Anyi M, Othman AK, Hamid KBAb, Tarawe J (2010) Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter. Energy 35:639–646

    Article  Google Scholar 

  25. Bauen A, Hart D, Chase A (2003) Fuel cells for distributed generation in developing countries: an analysis. Int J Hydrog Energy 28:695–701

    Article  Google Scholar 

  26. Munuswamy S, Nakamura K, Katta A (2011) Comparing the cost of electricity sourced from a fuel cell-based renewable energy system and the national grid to electrify a rural health centre in India: a case study. Renew Energy 36:2978–2983

    Article  Google Scholar 

  27. Santarelli M (2004) Design and analysis of stand-alone hydrogen energy systems with different renewable sources. Int J Hydrog Energy 29:1571–1586

    Article  Google Scholar 

  28. Kazempoor P, Dorer V, Weber A (2011) Modelling and evaluation of building integrated SOFC systems. Int J. Hydrog Energy 36:13241–13249

    Article  Google Scholar 

  29. Alcaide F, Cabot PL, Brillas E (2006) Fuel cells for chemicals and energy cogeneration. J Power Sources 153:47–60

    Article  Google Scholar 

  30. Agnolucci P (2007) Prospects of fuel cell auxiliary power units in the civil markets. Int J Hydrog Energy 32:4306–4318

    Article  Google Scholar 

  31. Lutsey N, Brodrick CJ, Sperling D, Dwyer HA (2002) Markets for fuel cell auxiliary power units in vehicles: a preliminary assessment. Institute of Transportation Studies. UCD-ITS-RP-02-44

    Google Scholar 

  32. Hochgraf C (2009) Application: transportation: electric vehicles: fuel cells. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam

    Google Scholar 

  33. Bradley TH, Moffitt BA, Mavris D, Parekh DE (2009) Applications: transportation: aviation: fuelcells. In Garche J (ed) Encyclopedia of Electrochemical Power Sources, Elsevier Amsterdam

    Google Scholar 

  34. Saxe M, Folkesson A, Alvfors P (2008) Energy system analysis of the fuel cell buses operated in the project: clean urban transport for Europe. Energy 33:689–711

    Article  Google Scholar 

  35. Collecting the History of Fuel Cells (2006). http://americanhistory.si.edu/fuelcells/index.htm. Smithsonian Institution. Accessed 30 Oct 2015

  36. Shekhawat D, Spivey JJ, Berry DA (2011) Fuel cells: technologies for fuel processing, Elsevier (2011)

    Google Scholar 

  37. Wark K (1977) Applied thermodynamics for engineers. McGraw-Hill, New York

    Google Scholar 

  38. Williams MC, Yamaji K, Yokokawa H, Fundamental thermodynamic studies of fuel cells using MALT2. J Fuel Cell Sci Technol 6:97–102 and 113–116 (2009)

    Google Scholar 

  39. Winkler W (2003) High temperature solid oxide fuel cells: fundamentals, design, and applications Thermodynamics. In: Singhal SC, Kendall K (eds) Oxford. Elsevier, UK, pp 53–82

    Google Scholar 

  40. Winkler W (1994) SOFC integrated power plants for natural gas. In: Proceedings of first European solid oxide fuel cell forum, Lucerne, Switzerland, 821–848, 3–7 Oct 1994

    Google Scholar 

  41. Williams M, Yamaji K, Horita T, Sakai N, Yokokawa H (2009) Exergetic studies of intermediate temperature, solid oxide fuel cell electrolytes. J Electrochem Soc 156:546–551

    Article  Google Scholar 

  42. Virkar A, Williams MC, Singhal SC (2007) Concepts for ultrahigh power density solid oxide fuel cells In: Williams M, Krist K (eds) ECS Transactions, vol 5. pp 401–422

    Google Scholar 

  43. Virkar AV (2005) Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes. J Power Sources 147:8–31

    Article  Google Scholar 

  44. Zhao, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141:79–95

    Article  Google Scholar 

  45. Yokokawa H, Sakai N, Horita T, Yamaji K, Brito ME (2005) Electrolytes for solid-oxide fuel cells. MRS Bull 30(8):591–595

    Article  Google Scholar 

  46. Choudhury NS, Patterson JW (1970) Steady-state chemical potential profiles in solid electrolytes. J Electrochem Soc 117:1384–1388

    Article  Google Scholar 

  47. Space applications of hydrogen and fuel cells (2015) National Aeronautics and Space Administration. http://www.nasa.gov/topics/technology/hydrogen/hydrogen_2009.html. Accessed 30 Oct 2015

  48. Sheffield JW (2007) Assessment of hydrogen energy for sustainable development. In: Sheffield Ç (ed) Springer, Netherlands (2007)

    Google Scholar 

  49. Gaines LL, Elgowainy A, Wang MQ (2008) Full fuel-cycle comparison of forklift propulsion systems. In: Argonne National Laboratory. ANL/ESD/08-3

    Google Scholar 

  50. Wang M, Elgowainy A, Han J (2010) Life-cycle analysis of criteria pollutant emissions from stationary fuel cell systems. US Department of Energy Hydrogen and Fuel Cells Program AN012

    Google Scholar 

  51. El-Sharkh MY, Rahman A, Alam MS, Byrne PC, Sakla AA, Thomas T (2004) A dynamic model for a stand-alone PEM fuel cell power plant for residential applications. J Power Sources 138:199–204

    Article  Google Scholar 

  52. Zhu Y, Tomsovic K (2002) Development of models for analyzing the load—following performance of microturbines and fuel cells. Electr Power Syst Res 62:1–11

    Article  Google Scholar 

  53. Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Springer, New York

    Book  Google Scholar 

  54. Jiao K, Li X (2011) Water transport in polymer electrolyte membrane fuel cells. Prog Energy Combust Sci 37:221–291

    Article  Google Scholar 

  55. Ous T, Arcoumanis C (2013) Degradation aspects of water formation and transport in proton exchange membrane fuel cell: a review. J Power Sources 240:558–582

    Article  Google Scholar 

  56. Tsushima S, Hirai S (2011) In situ diagnostics for water transport in proton exchange membrane fuel cells. Prog Energy Combust Sci 37:204–220

    Article  Google Scholar 

  57. Zhang Y, Li J, Ma L, Cai W, Cheng H (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3:675–691

    Article  Google Scholar 

  58. Dubau L, Castanheira L, Maillard F, Chatenet M, Lottin O, Maranzana G, Dillet J, Lamibrac A, Perrin JC, Moukheiber E et al (2014) A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdisc Rev Energy Environ 3:540–560

    Google Scholar 

  59. Banham D, Feng F, Furstenhaupt T, Pei K, Ye S, Birss V (2015) Novel mesoporous carbon supports for PEMFC catalysts. Catalysts 5:1046–1067

    Google Scholar 

  60. Anstrom JR (2014) Hydrogen as a fuel in transportation. Energy 63:499–524

    Google Scholar 

  61. Chirachanchar S, Pangon A, Jarumaneeroj C (2013) High temperature performance polymer electrolyte membranes. Membr Process. Sustain. Growth 247–287

    Google Scholar 

  62. Sim V, Han W, Poon HY, Lai YT, Yeung KL (2014) Confinement as a new architecture for self-humidifying proton-exchange membrane for PEMFC Abstracts of Papers. In: 248th ACS National Meeting & Exposition, San Francisco, CA, United States, 10–14 Aug 2014

    Google Scholar 

  63. Moilanen D E, Piletic IR, Fayer MD (2007) Dynamics of water in Nafion fuel cell membranes: the effects of confinement and structural changes on the hydrogen bonding network. In: NSTI Nanotech 2007, Nanotechnology Conference and Trade Show, Santa Clara, CA, United States, vol 4, pp 712–715 20–24 May 2007

    Google Scholar 

  64. Narayanan SR, Valdez TI, Firdosy S (2009) Analysis of the performance of Nafion-based hydrogen-oxygen fuel cells. J Electrochem Soc 156:B152–B159

    Article  Google Scholar 

  65. Tian JH, Gao PF, Zhang ZY, Luo WH, Shan ZQ (2008) Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. Int J Hydrogen Energy 33:5686–5690

    Article  Google Scholar 

  66. Tsai CH, Wang CC, Chang CY, Lin CH, Chen-Yang YW (2014) Enhancing performance of Nafion-based PEMFC by 1-D channel metal-organic frameworks as PEM filler. Int J Hydrogen Energy 39:15696–15705

    Article  Google Scholar 

  67. Matolin V, Fiala R, Vaclavu M, Matolinova I (2014) Thin film catalysts for PEMFCs. In: Abstracts of Papers, 248th ACS National Meeting & Exposition, San Francisco, CA, United States. 2014 ENFL-211, pp 10–14 (2014)

    Google Scholar 

  68. Boyaci SFC, Isik-Gulsac I, Osman OO (2013) Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology). Energy 55:1067–1075

    Article  Google Scholar 

  69. Lin BYS, Kirk DW, Thorpe SJ (2006) Performance of alkaline fuel cells: a possible future energy system. J Power Sources 161:474–483

    Article  Google Scholar 

  70. Aremo B, Adeoye MO, Obioh IB (2015) A simplified test station for alkaline fuel cell. J Fuel Cell Sci Technol 12:1–7

    Article  Google Scholar 

  71. Fuel Cell Basics (2000). Fuel Cells. http://www.fuelcells.org/basics/how.html. Accessed 30 Oct 2015

  72. Marino MG, Kreuer KD (2015) Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem 8:513–523

    Article  Google Scholar 

  73. Ishimoto T, Hamatake Y, Kazuno H, Kishida T, Koyama M (2015) Theoretical study of support effect of Au catalyst for glucose oxidation of alkaline fuel cell anode. Appl Surf Sci 324:76–81

    Article  Google Scholar 

  74. Geng F, Zeng WM, Ma YL (2013) Preparation and characterization of foam-Ni deposit Pt and Pd catalysts for alkaline fuel cell. Dianyuan Jishu 37:387–389

    Google Scholar 

  75. Aziznia, Oloman CW, Gyenge EL (2013) Platinum- and membrane-free swiss-roll mixed-reactant Alkaline Fuel cell. ChemSusChem 6:847–855

    Article  Google Scholar 

  76. Fuller TF, Perry M, Reiser C (2006) Applying the lessons learned from PAFC to PEM fuel cells. ECS Trans 1:337–344

    Article  Google Scholar 

  77. Fuller TF, Gallagher KG (2008) Phosphoric acid fuel cells. Mater Fuel Cells 209–247

    Google Scholar 

  78. Sammes N, Bove R, Stahl K (2004) Phosphoric acid fuel cells: fundamentals and applications. Curr Opin Solid State Mater Sci 8:372–378

    Article  Google Scholar 

  79. Steele BCH (2001) Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J. Mater Sci 36:1053–1068

    Article  Google Scholar 

  80. Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sources 160:957–968

    Article  Google Scholar 

  81. Stonehart P, Wheeler D (2005) Phosphoric acid fuel cells (PAFCs) for utilities: electrocatalyst crystallite design, carbon support, and matrix materials challenges. Mod Aspects Electrochem 38:373–424

    Article  Google Scholar 

  82. Hogarth M, Hards G (1996) Direct methanol fuel cells: technological advances and further requirements. Plat Met Rev 40:150–159

    Google Scholar 

  83. Hamnett A, Kennedy BJ (1988) Bimetallic carbon supported anode for the direct methanol-air fuel cell. Electrochim Acta 33:1613–1618

    Article  Google Scholar 

  84. Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today 38:445–457

    Article  Google Scholar 

  85. Libby B, Smyrl WH, Cussler EL (2003) Polymer-Zeolite composite membranes for direct methanol fuel cells. AIChE J 49:991–1001

    Article  Google Scholar 

  86. R. F. Service (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science 296:1222–1224

    Article  Google Scholar 

  87. Lu GQ, Wang CY, Yen TJ, Zang X (2004) Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochem Acta 49:821

    Google Scholar 

  88. Li X, Roberts EPL, Holmes SM (2006) Evaluation of composite membranes for direct methanol fuel cells. J Power Sources 154:115–123

    Article  Google Scholar 

  89. Tomczyk P (2006) MCFC versus other fuel cells—characteristics, technologies and prospects. J Power Sources 160(2006):858–862

    Article  Google Scholar 

  90. Zhu XJ, Huang B (2012) Molten carbonate fuel cells. Electrochem Technol Energy Storage Convers 2:729–775

    Article  Google Scholar 

  91. Rossi et al C (1999) In: Proceedings of Micro Nanotechnology for Space Applications, vol 1, Apr (1999)

    Google Scholar 

  92. Blomen L, Leo JMJ, Mugerwa M (1993) Fuel cell systems. Plenum Publishing, New York

    Google Scholar 

  93. Kunz HR (1987) Transport of electrolyte in molten carbonate fuel cells. J Electrochem Soc 134:195–113

    Google Scholar 

  94. Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149:S59–S67

    Google Scholar 

  95. Fuel Cell Technology Handbook (2002) In: Hoogers G (ed), CRC Press

    Google Scholar 

  96. McPhail SJ, Hsieh PH, Selman JR (2013) Molten carbonate fuel cells. Mater High-Temp Fuel Cells 341–371

    Google Scholar 

  97. Chen B (2011) Research and development of fuel cell technology in China. In: Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, (Pt. 1), 529–532, 25–28 Mar 2011

    Google Scholar 

  98. Mirahmadi A, Akbari H (2012) A noble method for molten carbonate fuel cells electrolyte manufacturing. J Solid State Electrochem 16:931–936

    Article  Google Scholar 

  99. Maru HC, Pigeaud A, Chamberlin R, Wilemski G (1986) Electrolyte management in molten carbonate fuel cells. Proc Electrochem Soc 86:398–422

    Google Scholar 

  100. Ang PGP, Sammells AF (1980) Influence of electrolyte composition on electrode kinetics in the molten carbonate fuel cell. J Electrochem Soc 127:1287–1294

    Google Scholar 

  101. Albin V, Goux A, Ringuede A, Belair S, Lair V, Cassir M (2007) Screening and properties of new materials for MCFC application. ECS Trans 3:205–213

    Article  Google Scholar 

  102. Park E, Hong M, Lee H, Kim M, Kim K (2005) A new candidate cathode material as (Co/Mg)-coated Ni powder for molten carbonate fuel cell. J Power Sources 143:84–92

    Article  Google Scholar 

  103. Wijayasinghe A, Lagergren C, Bergman B (2003) New cathode materials for molten carbonate fuel cells. Fuel Cells 2:181–188

    Article  Google Scholar 

  104. Fang B, Chen H (2001) A new candidate material for molten carbonate fuel cell cathodes. J Electroanal Chem 501:128–131

    Article  Google Scholar 

  105. Nguyen HVP, Kang MG, Ham HC, Choi SH, Han J, Nam SW, Hong SA, Yoon SP (2014) A new cathode for reduced-temperature molten carbonate fuel cells” J. Electrochem Soc 161:F1458–F1467

    Google Scholar 

  106. Li S, Sun J (2010) Electrochemical performances of NANOCOFC in MCFC environments. Int J Hydrogen Energy 35:2980–2985

    Article  Google Scholar 

  107. Selman JR (2006) Molten-salt fuel cells-Technical and economic challenges. J Power Sources 160:852–857

    Article  Google Scholar 

  108. Kaun TD, Schoeler A, Centeno CJ, Krumpelt M (1999) Improved MCFC performance with Li/Na/Ba/Ca carbonate electrolyte. Proc Electrochem Soc 99:219–227

    Google Scholar 

  109. Makkus RC, Sitters EF, Nammensma P, Huijsmans JPP (1997) MCFC electrolyte behavior; Li/K versus Li/Na carbonate. Proc Electrochem Soc 97:344–352

    Google Scholar 

  110. Ketelaar JAA (1987) Molten carbonate fuel cells. From Fuel Cells Trends Res Appl [Proc. Workshop] 161–72

    Google Scholar 

  111. Cigolotti V, McPhail S, Moreno A, Yoon SP, Han JH, Nam SW, Lim TH (2011) MCFC fed with biogas: Experimental investigation of sulphur poisoning using impedance spectroscopy. Int J Hydrogen Energy 36:10311–10318

    Article  Google Scholar 

  112. Lee D, Kim J, Jo K (2011) A Study on In-Situ Sintering of Ni-10 wt % Cr Anode for MCFC. J Electrochem Soc 158:B500–B504

    Article  Google Scholar 

  113. Devianto H, Yoon SP, Nam SW, Han J, Lim TH (2006) Study on ceria coating effect of H2S tolerance in the anode of molten carbonate fuel cell. Stud Surf Sci Catal 159:601–604

    Article  Google Scholar 

  114. Hirschenhofer JH, Stauffer DB, Hengelman RR (1998) Fuel cell handbook 4th edn. Passons Co. for US Department of Energy

    Google Scholar 

  115. Melendez-Ceballos A, Albin V, Ringuede A, Fernandez-Valverde SM, Cassir M (2014) Electrochemical behavior of Mx-1Ox (M = Ti, Ce and Co) ultra-thin protective layers for MCFC cathode. Int J. Hydrogen Energy 39:12233–12241

    Article  Google Scholar 

  116. Bozzini B, Maci S, Sgura I, Lo Presti R, Simonetti E (2011) Elisabetta Numerical modelling of MCFC cathode degradation in terms of morphological variations. Int J Hydrogen Energy 36:10403–10413

    Article  Google Scholar 

  117. Matsuzawa K, Akinaga Y, Mitsushima S, Ota KI (2011) Solubilities of NiO and LaNiO3 in Li/Na eutectic carbonate with rare-earth oxide. J Power Sources 196:5007–5011

    Google Scholar 

  118. Escudero MJ, Ringuede A, Cassir M, Gonzalez-Ayuso T, Daza L (2007) Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. J Power Sources 171:261–267

    Article  Google Scholar 

  119. Matsuzawa K, Tatezawa G, Matsuda Y, Ryoke H, Mitsushima S, Kamiya N, Ota KI (2006) Effect of rare earth addition to molten carbonate on the solubility of NiO. Proc Electrochem Soc 24:666–678

    Google Scholar 

  120. Sciavovelli A, Verda V, Amelio C, Repetto C, Diaz G (2012) Performance improvement of a circular MCFC through optimal design of the fluid distribution system. J Fuel Cell Sci Technol 9:041011/1–041011/8

    Google Scholar 

  121. Rinaldi G, McLarty D, Brouwer J, Lanzini A, Santarelli M (2015) Study of CO2 recovery in a carbonate fuel cell tri-generation plant. J Power Sources 284:16–26

    Article  Google Scholar 

  122. Minutillo M, Perna A, Jannelli E (2014) SOFC and MCFC system level modeling for hybrid plants performance prediction. Int J Hydrogen Energy 39:21688–21699

    Article  Google Scholar 

  123. Kim YJ, Chang IG, Lee TW, Chung MK (2010) Effects of relative gas flow direction in the anode and cathode on the performance characteristics of a Molten Carbonate Fuel Cell. Fuel 89:1019–1028

    Article  Google Scholar 

  124. Law MC, Lee VC-C, Tay CL (2015) Dynamic behaviors of a molten carbonate fuel cell under a sudden shut-down scenario: the effects on temperature gradients. Appl Therm Eng 82:98–109

    Article  Google Scholar 

  125. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC (2015) Toward Understanding Metal-Catalyzed Ethanol Reforming ACS Catalysis 5:3841–3863

    Google Scholar 

  126. Guerrero L, Castilla S, Cobo M (2014) Martha Advances in ethanol reforming for the production of hydrogen. Quimica Nova 37:850–856

    Google Scholar 

  127. Vatani A, Khazaeli A, Roshandel R, Panjeshahi MH (2013) Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer. Energy Convers Manag 67:197–207

    Article  Google Scholar 

  128. Vahc ZY, Jung CY, Yi SC (2014) Performance degradation of solid oxide fuel cells due to sulfur poisoning of the electrochemical reaction and internal reforming reaction. Int J Hydrogen Energy 39:17275–17283

    Article  Google Scholar 

  129. Dimopoulos G G, Stefanatos IC, Kakalis NMP (2015) Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration. Energy Convers Manag (2015). in press

    Google Scholar 

  130. Gharieh K, Jafari MA, Guo Q (2015) Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties. J Power Sources 297:302–314

    Article  Google Scholar 

  131. Zhang X, Liu H, Ni M, Chen J (2015) Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system. Renewable Energy 80:407–414

    Article  Google Scholar 

  132. Zhang J, Zhang X, Liu W, Liu H, Qiu J, Yeung KL (2014) A new alkali-resistant Ni/Al2O3-MSU-1 core-shell catalyst for methane steam reforming in a direct internal reforming molten carbonate fuel cell. J Power Sources 246:74–83

    Article  Google Scholar 

  133. Moon HD, Lim TH, Lee HI (1999) Chemical poisoning of Ni/MgO catalyst by alkali carbonate vapor in the steam reforming reaction of DIR-MCFC. Bull Korean Chem Soc 20:1413–1417

    Google Scholar 

  134. Tanaka J, Saiai A, Sakurada S, Nakajima T, Miyake Y, Saitoh T, Sasaki M, Yanaru H (1993) Design of 30 kW class DIR-MCFC system. Proc Electrochem Soc 93:37–47

    Google Scholar 

  135. Baker B, Burns D, Lee C, Maru H, Patel P (1981) Internal reforming for natural gas-fueled molten-carbonate fuel cells. Report 107. (90-6194-(13), GRI-80/0126; Order No. PB82-200676)

    Google Scholar 

  136. Kim H, Cho JH, Lee KS (2013) Detailed dynamic modeling of a molten carbonate fuel cell stack with indirect internal reformers. Fuel Cells 13:259–269

    Article  Google Scholar 

  137. Pfafferodt M, Heidebrecht P, Sundmacher K, Wuertenberger U, Bednarz M (2008) Multiscale Simulation of the Indirect Internal Reforming Unit (IIR) in a Molten Carbonate Fuel Cell (MCFC). Ind Eng Chem Res 47:4332–4341

    Article  Google Scholar 

  138. Freni S, Aquino M, Passalacqua E (1994) Molten carbonate fuel cell with indirect internal reforming. J Power Sources 52:41–47

    Article  Google Scholar 

  139. Miyazaki M, Okada T, Ide H, Matsumoto S, Shinoki T, Ohtsuki J (1992) Development of an indirect internal reforming molten carbonate fuel cell stack. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, 27th(3), vol 3. 287–3.292

    Google Scholar 

  140. Huijsmans JPP, Kraaij GJ, Makkus RC, Rietveld G, Sitters EF, Reijers HThJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86:117–121

    Article  Google Scholar 

  141. Williams MC, Maru HC (2006) Distributed generation—Molten carbonate fuel cells. J Power Sources 160:866–867

    Google Scholar 

  142. Coddet P, Liao HL, Coddet C (2014) A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies. Adv Manufact 2:212–221

    Article  Google Scholar 

  143. Patakangas J, Ma Y, Jing Y, Lund P (2014) Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). J Power Sources 263:315–331

    Article  Google Scholar 

  144. Zhu B (2009) Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects. Int J Energy Res 33:1126–1137

    Article  Google Scholar 

  145. Ishihara S, Yamamoto T (2003) High temperature solid oxide fuel cells fundamentals, design and applications. In: Singhal SC, Kendal K (eds) Elsevier

    Google Scholar 

  146. Mukhopadhyay M, Mukhopadhyay J, Basu RN (2013) Functional anode materials for solid oxide fuel cell—a review. Trans Indian Ceram Soc 72:145–168

    Article  Google Scholar 

  147. Tao SW, Cowin PI, Lan R (2012) Novel anode materials for solid oxide fuel cells. Energy 35:445–477

    Google Scholar 

  148. Grenier JC, Bassat JM, Mauvy F (2012) Novel cathodes for solid oxide fuel cells. Energy 35:402–444

    Google Scholar 

  149. Ding D, Li X, Lai SY, Gerdes K, Liu M (2014) Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575

    Article  Google Scholar 

  150. Backhaus-Ricoult M (2008) SOFC—a playground for solid state chemistry. Solid State Sci 10:670–688

    Article  Google Scholar 

  151. Vielstich W (1970) In: Fuel Cells, Modern Processes for the Electrochemical Production of Energy Chichester, Wiley-Interscience, UK

    Google Scholar 

  152. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45:2423–2435

    Article  Google Scholar 

  153. Huijsmans JPP, van Berkel FPF, Christie GM (1998) Intermediate temperature SOFC—A promise for the 21st century. J Power Sources 71:107–110

    Article  Google Scholar 

  154. Singh P, Minh NQ (2004) Solid oxide fuel cells: technology status. Int J Appl Ceramic Technol 1:5–15

    Article  Google Scholar 

  155. Veyo SE, Vora SD, Lundberg WL, Litzinger KP (2003) Tubular SOFC hybrid power system status. ASME Turbo Expo: Power for Land, Sea & Air, Atlanta, GA, United States, 708-714, 16–19 June 2003

    Google Scholar 

  156. Hishinuma M, Kawashima T, Yasuda I, Matsuzuki Y, Ogasawara K (1995) Current status of planar SOFC development at Tokyo Gas. Proc Electrochem Soc 1:153–162

    Google Scholar 

  157. Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313

    Article  Google Scholar 

  158. Winkler W, Lorenz H (2002) The design of stationary and mobile solid oxide fuel cell-gas turbine systems. J Power Sources 105:222–227

    Article  Google Scholar 

  159. Horiuchi K (2013) Current status of national SOFC projects in Japan. ECS Trans 57:3–10

    Article  Google Scholar 

  160. Jones FGE, Casting T (2005) Co-Firing and Electrical Characterisation of Novel Design Solid Oxide Fuel Cell SOFCROLL PhD thesis, University of St Andrews

    Google Scholar 

  161. Minh NQ (1993) Ceramic fuel-cells. J. American Ceramic Soc 76:563–588

    Google Scholar 

  162. Lee HM (2003) Electrochemical characteristics of La1−xSrxMnO3 for solid oxide fuel cell. Mater Chem Phys 77:639–646

    Article  Google Scholar 

  163. Tanner CW, Fung KZ, Virkar AV (1997) The effect of porous composite electrode structure on solid oxide fuel cell performance. 1. Theoretical analysis. J Electrochem Soc 144:21–30

    Google Scholar 

  164. Gorte RJ et al (2000) Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv Mater 12:1465–1469

    Article  Google Scholar 

  165. Ivers-Tiffee E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21:1805–1811

    Article  Google Scholar 

  166. Dees DW et al (1987) Conductivity of porous Ni/ZrO2-Y2O3 cermets. J Electrochem Soc 134:2141–2146

    Article  Google Scholar 

  167. Jiang SP, Callus PJ, Badwal SPS (2000) Fabrication and performance of Ni/3 mol% Y2O3-ZrO2 cermet anodes for solid oxide fuel cells. Solid State Ionics 132:1–14

    Article  Google Scholar 

  168. Buonomano A, Calise F, Dentice d’Accadia M, Palombo A, Vicidomini M (2015) Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: a review. Appl Energy 156:32–85

    Article  Google Scholar 

  169. Doherty W, Reynolds A, Kennedy D (2015) Process simulation of biomass gasification integrated with a solid oxide fuel cell stack. J Power Sources 277:292–303

    Article  Google Scholar 

  170. Zabihian FA (2009) A review on modeling of hybrid solid oxide fuel cell systems. Int J Eng 3:85–119

    Google Scholar 

  171. McPhail SJ, Aarva A, Devianto H, Bove R, Moreno A (2011) SOFC and MCFC: commonalities and opportunities for integrated research. Int J Hydrogen Energy 36:10337–45.9

    Google Scholar 

  172. Calise F, Dentice d Accadia M, Vanoli L, von Spakovsky MR (2007) Full load synthesis/design optimization of a hybrid SOFC GT power plant. Energy 32:446–458

    Article  Google Scholar 

  173. Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z (2010) A review of integration strategies for solid oxide fuel cells. J Power Sources 195:685–702

    Article  Google Scholar 

  174. Calise F, Dentice d Accadia M, Vanoli L, von Spakovsky MR (2006) Single-level optimization of a hybrid SOFC GT power plant. J Power Sources 159:1169–1185

    Article  Google Scholar 

  175. Calise F, Ferruzzi G, Vanoli L (2009) Parametric exergy analysis of a tubular solid oxide fuel cell (SOFC) stack through finite-volume model. Appl Energy 86:2401–2410

    Article  Google Scholar 

  176. Zhou XD, Singhal SC, Fuel Cells—Solid Oxide Fuel Cells, pp 1–16

    Google Scholar 

  177. Amarasinghe S, Ammala P, Aruliah S, Mizusaki J (2005) Solid Oxide Fuel Cells IX (SOFC-IX). In: Singhal SC (ed) The Electrochemical Society, Inc, 184—190

    Google Scholar 

  178. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford

    Google Scholar 

  179. Mukerjee S, Haltiner K, Kerr R et al (2007) Solid oxide fuel cell development: latest results. In: Eguchi K, Singhal SC, Yokokawa H, Mizusaki J (eds) Solid oxide fuel cells-X. The Electrochemical Society, New Jersey, pp 59–65

    Google Scholar 

  180. Brandon NP, Blake A, Corcoran D et al (2004) Development of metal supported solid oxide fuel cells for operation at 500–600 °C. J Fuel Cell Sci Technol 1:61–65

    Article  Google Scholar 

  181. van Gerwen RJF (2003) High temperature solid oxide fuel cells, fundamentals, design and applications, systems and applications. In: Singhal SC, Kendall K (eds.) Elsevier, New York, 364–392

    Google Scholar 

  182. Atkinson A, Barnett S, Gorte RJ et al (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27

    Article  Google Scholar 

  183. Suzuki M, Sogi T, Higaki K et al (2007) Development of SOFC residential cogeneration system at Osaka Gas and Kyocera. In: Eguchi K, Singhal SC, Yokokawa H, Mizusaki J (eds) Solid Oxide Fuel Cells-X, The Electrochemical Society, 27–30

    Google Scholar 

  184. Tanner CW, Fung KZ, Virkar AV (1997) The effect of porous composite electrode structure on solid oxide fuel cell performance: theoretical analysis. J Electrochem Soc 144:21–30

    Article  Google Scholar 

  185. Vora SD (2007) Development of high power density seal-less SOFCs. In: Eguchi K, Singhal SC, Yokokawa H, Mizusaki J (eds) Solid oxide fuel cells-X. Electrochem Soc, New Jersey, pp 149–154

    Google Scholar 

  186. Stevenson JW, Singh P, Singhal SC (2005) The secrets of SOFC success. Fuel Cell Rev 2:15–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Turco .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turco, M., Ausiello, A., Micoli, L. (2016). Fuel Cells Operating and Structural Features of MCFCs and SOFCs. In: Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-03215-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03215-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03214-6

  • Online ISBN: 978-3-319-03215-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics