Skip to main content

Processes of Biogas Production: Anaerobic Digestion and Thermal Gasification

  • Chapter
  • First Online:
Treatment of Biogas for Feeding High Temperature Fuel Cells

Part of the book series: Green Energy and Technology ((GREEN))

  • 973 Accesses

Abstract

This chapter reviews the biogas production by anaerobic digestion (AD) and thermal gasification (TG) processes. The different steps of the AD and the characteristics of the biogas obtained from kinds of biomass carefully have been described. Some attention is devoted to the study of the conditions and techniques proposed in literature to improve the biogas production from organic waste, also analyzing the treatments of the biomass, such as ultrasound, heating, microwave, and chemicals. The co-digestion technique and the design and operating conditions of digesters have been also taken into account. The TG has been treated describing the whole process and the influence of the operating variables, such as temperature and pressure and gasifying agents. Some examples of the type gasifiers are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  Google Scholar 

  2. Andriani D, Wresta A, Atmaja TD, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928

    Article  Google Scholar 

  3. Massé DI, Talbot G, Gilbert Y (2011) On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Anim Feed Sci Technol 166–167:436–445

    Article  Google Scholar 

  4. Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  5. Petersson A, Wellinger A (2009) Biogas upgrading technologies-developments and innovations. IEA Bioenergy

    Google Scholar 

  6. Yiridoe EK, Gordon R, Brown BB (2009) Nonmarket cobenefits and economic feasibility of on-farm biogas energy production. Energy Policy 37:1170–1179

    Article  Google Scholar 

  7. Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Boriroza V, Hrbek R, Friedel J, Pötsch E, Wagentristel H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crop grown in sustainable crop rotations. Bioresour Technol 98:3204–3212

    Article  Google Scholar 

  8. Kvasauskas M, Baltrenas P (2009) Research on anaerobically treated organic waste suitability for soil fertilisation. J Environ Eng Landsc Manage 17:205–211

    Article  Google Scholar 

  9. Jeyanavagam SS, Collins ER Jr, Eldridge R (1984) Weed seed survival in dairy manure anaerobic digester. Trans Am Soc Agric Eng 27:1518–1523

    Article  Google Scholar 

  10. Kramer JM, Kuzel FJ (2003) Farm-scale anaerobic digesters in the great lakes states. BioCycle 44:58–61

    Google Scholar 

  11. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) FAO: livestock’s long shadow environmental issues and options”. FAO, Rome, Italy, 416 pp

    Google Scholar 

  12. Kebread E, Clark K, Wagner-Riddle C, France J (2006) Methane and nitrous oxide emissions from Canadian Animal agriculture: a review. Can J Anim Sci 86:135–158 (2006)

    Google Scholar 

  13. Fischer JR, Iannotti EL, Sievers DM (1981) Anaerobic digestion of manure from swine fed on various diets. Agric Wastes 3:201–214

    Google Scholar 

  14. Stevens MA, Schulte DD (1977) Low temperature anaerobic digestion of swine manure. ASAE paper No. 77-1013. St. Joseph, MI, USA, p 19

    Google Scholar 

  15. Ke-Xin I, Nian-Guo L (1980) Fermentation technology for rural digesters in China. Proc. Bioenergy 80:440–442

    Google Scholar 

  16. Hashimoto AG (1983) Thermophilic and mesophilic anaerobic fermentation of swine manure. Agric Wastes 6:175–191

    Article  Google Scholar 

  17. Wellinger A, Kaufmann R (1982) Psychrophilic methane production from pig manure. Process Biochem 17:26–30

    Google Scholar 

  18. Henze M, Harremoes P (1983) Anaerobic treatment of wastewater in fixed film reactors: a literature review. Water Sci Technol 15:1–101

    Google Scholar 

  19. Chandler JA, Hermes SK, Smith KD (1983) A low cost 75 kW covered lagoon biogas system. In: Proceedings of the Symposium on Energy from Biomass and Waste VII, Lake Buena Vista, FL, USA, pp 627–646

    Google Scholar 

  20. Wellinger A (1984) Anaerobic digestion: a review comparison with two types of aeration systems for manure treatment and energy production on the small scale farm. Agric Wastes 10:117–133

    Article  Google Scholar 

  21. Cullimore RR, Maule A, Mansui N (1985) Ambient temperature methanogenesis from pig manure waste lagoons: thermal gradient incubator studies. Agric Wastes 12:147–157

    Google Scholar 

  22. Sutter K, Wellinger A (1987) ACF-system: a new low temperature biogas digester. In: Szabolcs I, Welte E (eds) Agricultural waste management and environmental protection. 4th International CIEC symposium. Braunschweig, Germany, p 554

    Google Scholar 

  23. Balsari P, Bozza E (1988) Fertilizers and biogas recovery installation in a slurry lagoon. In: Szabolcs I, Welte E (eds) Agricultural waste management and environmental protection, 4th International CIEC symposium. Braunschweig, Germany, pp 71–80

    Google Scholar 

  24. Chen TH, Shyu WH (1998) Chemical characterization of anaerobic digestion treatment of poultry mortalities. Bioresour Technol 63:37–48

    Article  Google Scholar 

  25. Safley LM, Westerman PW (1992) Performance of a dairy manure anaerobic lagoon. Bioresour Technol 42:43–52

    Article  Google Scholar 

  26. Safley LM, Westerman PW (1994) Low temperature digestion of dairy and swine manure. Bioresour Technol 47:165–171

    Article  Google Scholar 

  27. Massé DI, Patni NK, Droste RL, Kennedy KJ (1996) Operation strategies for psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Can J Civ Eng 23:1285–1294

    Article  Google Scholar 

  28. Massé DI, Droste RL, Kennedy KJ, Patni NK, Munroe JA (1997) Potential for the psychrophilic anaerobic treatment of swine manure using a sequencing batch reactor. Can Agric Eng 392:5–33

    Google Scholar 

  29. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12

    Article  Google Scholar 

  30. Lusk PD (1998) Methane recovery from animal manures: the current opportunities. Casebook. National Renewable Energy Laboratory US Department of Energy, Washington, DC, USA, 150 pp

    Google Scholar 

  31. Steffen R, Szolar O, Braun R (2000) Feedstocks for anaerobic digestion. In: Ørtenblad H (ed) Anaerobic digestion: making energy and solving modern wastes problems. AD-NETT. The European Anaerobic Digestion Network, pp 34–52

    Google Scholar 

  32. Hartmann H, Ahring BK (2005) Anaerobic digestion of the organic fraction of municipal waste: influence of co-digestion with manure. Water Res 39:1543–1552

    Article  Google Scholar 

  33. Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293

    Article  Google Scholar 

  34. El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101:4021–4028

    Article  Google Scholar 

  35. Lehtomäki A, Huttunen S, Rintala JA (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609

    Article  Google Scholar 

  36. Comino E, Rosso M, Riggio V (2010) Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix. Bioresour Technol 101:3013–3019

    Article  Google Scholar 

  37. Wu X, Yao W, Zhu J, Miller C (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol 101:4042–4047

    Article  Google Scholar 

  38. Field JA, Caldwell JS, Jeyanayagam S, Reneau RB Jr, Kroontje W, Collins ER Jr (1984) Fertilizer recovery from anaerobic digesters. Trans ASAE 27:1871–1876

    Article  Google Scholar 

  39. Larsen KE (1986) Fertilizer value of anaerobic treated cattle and pig slurry to barley and beet. In: Kofoed AD, Williams JH, L’Hermite P (eds) Efficient land use of sludge and manure. Elsevier Applied Science Publishers, London, UK, pp 56–60

    Google Scholar 

  40. Messner H, Amberger A (1987) Composition, nitrification and fertilizing effect of anaerobically fermented slurry. In: Szabolcs I, Welte E (eds) Agricultural waste management and environmental protection. 4th International CIEC symposium. Braunschweig, Germany, pp 125–130

    Google Scholar 

  41. Plaixats J, Barcelo J, Garcia-Moreno J (1988) Characterization of the effluent residue from anaerobic digestion of pig excreta for its utilization as fertilizer. Agrochimica 32:236–239

    Google Scholar 

  42. Massé DI, Croteau F, Masse L (2007) The fate of crop nutrients during the low temperature anaerobic digestion of swine manure slurries in sequencing batch reactors. Bioresour Technol 98:2819–2823

    Article  Google Scholar 

  43. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  Google Scholar 

  44. Wellinger A, Lindberg A (2002) Biogas upgrading and utilisation. IEA Bioenergy, Task 24—Energy from biological conversion of organic waste, pp 1–20

    Google Scholar 

  45. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources. an introduction. Wiley-VCH, Wienheim

    Google Scholar 

  46. Tortora GJ, Funke BR, Case CL (2010) Microbiology, an introduction, 10th edn. Benjamin Cummings, Redwood City

    Google Scholar 

  47. Angelidaki I, Ellegard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372

    Article  Google Scholar 

  48. Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats X (2011) Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour Technol 102:2219–2227

    Article  Google Scholar 

  49. Tsavkelova EA, Netrusov AI (2012) Biogas production from cellulose containing substrates: a review. Appl Biochem Microbiol 48:421–433

    Article  Google Scholar 

  50. Shin SG, Lee S, Lee C, Hwang K, Hwang S (2010) Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol 101:9461–9470

    Article  Google Scholar 

  51. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66:271–294

    Article  Google Scholar 

  52. Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321

    Article  Google Scholar 

  53. Zinder SH (1993) Physiological ecology of methanogens, In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman Hall, New York, pp 128–206

    Google Scholar 

  54. Davies ZS, Mason D, Brooks AE, Griffith GW, Merry RJ, Theodorou MK (2000) An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim Feed Sci Technol 83:205–221

    Article  Google Scholar 

  55. Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman Hall, New York, pp 35–80

    Google Scholar 

  56. Garrity G (ed) (2001) Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  57. Ferry G (2010) How to make a living by exhaling methane. Annu Rev Microbiol 64:453–473

    Article  Google Scholar 

  58. Liu Y (2010) Taxonomy of methanogens. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 549–558

    Google Scholar 

  59. Ferry JG (1993) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman Hall, New York

    Google Scholar 

  60. Schink B, Zeikus JG (1982) Microbial ecology of pectin decomposition in anoxic lake sediments. J General Microbiol 128:393–404

    Google Scholar 

  61. Pol A, Demeyer DI (1988) Fermentation of methanol in the sheep rumen. Appl Environ Microbiol 54:832–834

    Google Scholar 

  62. Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K (eds) The Prokariotes, 2nd edn. Springer, New York, pp 719–760

    Google Scholar 

  63. Stams AJM, Oude Elferink SJWH, Westermann P (2003) Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv Biochem Eng Biotechnol 81:31–56

    Google Scholar 

  64. Bagi Z, Acs N, Balint B, Hovrath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482

    Article  Google Scholar 

  65. Ács N, Bagi Z, Rakhely G, Kovács E, Wirth R, Kovács KL (2011) Improvement of biogas production by biotechnological manipulation of the microbial population. In: 3rd IEEE International Symposium on Exploitation of Renewable Energy Sources. Subotica, Serbia

    Google Scholar 

  66. Ács N (2010) Monitoring the biogas producing microbes. Act Biologica Szegediensis 54(1):59–73

    Google Scholar 

  67. Ritchie DA, Edwards C, McDonald IR, Murrell JC (1997) Detection of metanogen and metanotrophs in natural environment. Glob Change Biol 3:339–350

    Article  Google Scholar 

  68. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    Google Scholar 

  69. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modelling of anaerobic digestion processes. In: Scheper T, Ahring BK (eds) Biomethanation I. Springer, Berlin

    Google Scholar 

  70. Andara AR, Esteban JMB (1999) Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries. Biomass Bioenergy 17:435–443

    Article  Google Scholar 

  71. Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896

    Article  Google Scholar 

  72. Biswas L, Chowdhury R, Battacharya P (2007) Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues. Biomass Bioenergy 31:80–86

    Article  Google Scholar 

  73. Anhuradha S, Bakiya P, Mullai P (2013) The kinetics of biogas production in an anaerobic hybrid reactor. Int J Environ Bioenergy 7:168–177

    Google Scholar 

  74. Angelidaki I, Ellegaard L, Ahring B (2003) Application of the anaerobic digestion process. In: Biomethanation II. Advances in Biochemical Engineering/Biotechnology. Springer, pp 2–33

    Google Scholar 

  75. Nielsen HB, Agelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99:7995–8001

    Article  Google Scholar 

  76. Wiegant WM, Zeeman G (1986) The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes. Agric Wastes 16:243–253

    Article  Google Scholar 

  77. Abdoun E, Weiland P (2009) Optimization of monofermentation from renewable raw materials by the addition of trace elements. Bornimer Agrartechnische Berichte 68:69–78

    Google Scholar 

  78. Jarvis A, Nordberg A, Jarlsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenergy 12:453–460

    Article  Google Scholar 

  79. Bischoff M (2009) Erkenntnisse beim Einsatz von Zusatz- und Hilfsstoffen sowie von Spurenelementen in Biogasanlagen. VDI-Ber 2057:111–123

    Google Scholar 

  80. Kim IS, Hwang MH, Jang NJ, Hyun SH, Lee ST (2004) Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int J Hydr Energy 29:1133–1140

    Google Scholar 

  81. Staley BF, Reyes III FL, Barlaz MA (2011) Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 77, 2381–2391

    Google Scholar 

  82. Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht, pp 335–415

    Google Scholar 

  83. Braun R (1982) Biogas-Methangärung organischer. Springer Wien, Abfallstoffe

    Book  Google Scholar 

  84. Zubr J (1986) Methanogenic fermentation of fresh and ensiled plant materials. Biomass 11:159–171

    Article  Google Scholar 

  85. Döhler H, Eckel H, Frisch J (2006) Energiepflanzen. KTBL, Darmstadt

    Google Scholar 

  86. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJ (2011) Biomethanation and its potential. In: Rosenzweig, C, Ragsdale W (eds) Methanogenesis (Methods in Enzymology), vol 494. Academic Press, pp 327–351

    Google Scholar 

  87. Hecht C, Griehl C (2009) Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste. Bioresour Technol 100:654–658

    Article  Google Scholar 

  88. Ferry JG (2011) Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 22:351–357

    Article  Google Scholar 

  89. Jones EJ, Voytek MA, Corum MD, Orem WH (2010) Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Appl Environ Microbiol 76:7013–7022

    Article  Google Scholar 

  90. Björnsson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  Google Scholar 

  91. Di Stefano TD, Ambulkar A (2006) Methane production and solids destruction in an anaerobic solid waste reactor due to post-reactor caustic and heat treatment. Water Sci Technol 53:43–51

    Google Scholar 

  92. Ferrer I, Vazquez F, Font X (2010) Long term operation of a thermophilic anaerobic reactor: Process stability and efficiency at decreasing sludge retention time. Bioresour Technol 101:2972–2980

    Article  Google Scholar 

  93. Diaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72:4942–4949

    Article  Google Scholar 

  94. Wang QH, Kuninobu M, Ogawa H, Kato Y (1999) Degradation of volatile fatty in highly efficient anaerobic digestion. Biomass Bioenergy 16:407–416

    Article  Google Scholar 

  95. Mösche M, Jördening HJ (1999) Comparison of different models of substrate and product inhibition in anaerobic digestion. Water Res 33:2545–2554

    Article  Google Scholar 

  96. Antizar-Ladislao B, Turrion-Gomez JL (2008) Biofuels Bioprod Bioref 2:455–469

    Google Scholar 

  97. Weiland P (2006) Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci 6:302–309

    Article  Google Scholar 

  98. Yadvika S, Sreekrishnan TR, Kohli S (2004) Enhancement of biogas production from solid substrates using different techniques: a review. Biores Technol 95:1–10

    Article  Google Scholar 

  99. Gladchenko MA, Gaydamaka SN, Murygina VP, Varfolomeev SD (2013) The optimization of the conversion of agricultural waste into volatile fatty acids under anaerobic conditions. Biocatalysis 69:187–193

    Google Scholar 

  100. Song H, Clarke P (2009) Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor. Biores Technol 100:1268–1273

    Google Scholar 

  101. Pommier S, Manas LA, Lefebvre X (2010) Analysis of the outcome of shredding pretreatment on the anaerobic biodegradability of paper and cardboard materials. Biores Technol 101:463–468

    Google Scholar 

  102. Eleazer WE, Odle WS, Wang YS, Barlaz MA (1997) Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ Sci Technol 31:911–917

    Article  Google Scholar 

  103. Wolfe RS (1996) ASM News 62(10):529–534

    Google Scholar 

  104. Smiti N, Ollivier B, Garcia JL (1986) FEMS Microbiol Letts 35(1):93–97

    Google Scholar 

  105. Nozhevnikova AN, Zepp K, Vazquez F, Zehnder AJB, Holliger C (2003) Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes. Appl Environ Microbiol 69:1832–1835

    Article  Google Scholar 

  106. Li T, Mazeas Sghir A, Leblon G, Bouchez T (2009) Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904

    Article  Google Scholar 

  107. Leven L, Eriksson ARB, Schnurer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    Article  Google Scholar 

  108. Gao WJ, Leung KT, Qin WS, Liao BQ (2011) Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor. Bioresour Technol 102:8733–8740

    Article  Google Scholar 

  109. Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102:5353–5360

    Article  Google Scholar 

  110. Teghammar A, Yngvesson J, Lundin M, Taherzadeh MJ, Sarvari HI (2010) Pretreatment of paper tube residuals for improved biogas production. Bioresour Technol 101:1206

    Google Scholar 

  111. Hjorth M, Christensen KV, Christensen ML, Sommer SG (2010) Solid–liquid separation of animal slurry in theory and practice: a review. Agron Sustain Dev 3:153–180

    Article  Google Scholar 

  112. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  113. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manage 28:939–951

    Article  Google Scholar 

  114. Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM (2012) Codigestion of cattle manure with food waste and sludge to increase biogas production. Waste Manage 32:1821–1825

    Article  Google Scholar 

  115. Amon T, Amon B, Kryvoruchko V, Bodiroza V, Pötsch E, Zollitsch W (2006) Optimising methane yield from anaerobic digestion of manure: effects of dairy systems and of glycerin supplementation. Int Congr Ser 1293:217–220

    Article  Google Scholar 

  116. Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Biores Technol 99:8288–8293

    Article  Google Scholar 

  117. Boe K, Karakashev D, Trably E, Angelidaki I (2009) Effect of post-digestion temperature on serial CSTR biogas reactor performance. Water Res 43:669–676

    Article  Google Scholar 

  118. Angelidaki I, Ahring BK (2000) Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol 41:189–194

    Google Scholar 

  119. Bougrier C, Delgenès JP, Carrere H (2006) Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Saf Environ Prot 84:280–284

    Article  Google Scholar 

  120. Lin JG, Chang CN, Chang SC (1997) Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilisation. Biores Technol 62:85–90

    Article  MathSciNet  Google Scholar 

  121. Bougrier C, Battimelli A, Delgenès JP, Carrere H (2007) Combined ozone pretreatment and anaerobic digestion for the reduction of biological sludge production in wastewater treatment. Ozone Sci Eng 29:201–206

    Article  Google Scholar 

  122. Xie R, Xing Y, Ghani YA, Ooi KE, Ng SW (2007) Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge. J Environ Eng Sci 6:533–541

    Article  Google Scholar 

  123. Zeng X, Ma Y, Ma L (2007) Utilization of straw in biomass energy in China. Renew Sustain Energy Rev 11:976–987

    Article  Google Scholar 

  124. Benabdallah El-Hadj T, Dosta J, Marquez-Serrano R, Mata-Alvarez J (2007) Effect of ultrasound pretreatment in mesophilic and thermophilic anaerobic digestion with emphasis on naphthalene and pyrene removal. Water Res 41:87–94

    Google Scholar 

  125. Toreci I, Eskicioglu C, Terzian N, Droste RL, Kennedy KJ (2007) Mesophilic anaerobic digestion with high temperature microwave pretreatment. Water Res 43:1273–1284

    Article  Google Scholar 

  126. Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M (2007) A thermal microwave effects for enhancing digestibility of waste activated sludge. Water Res 41:2457–2466

    Article  Google Scholar 

  127. Phothilangka P, Schoen MA, Huber M, Luchetta P, Winkler T, Wett B (2006) Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge. Water Sci Technol 58:1467–1473

    Article  Google Scholar 

  128. Bougrier C, Carrere H, Delgenes JP (2005) Solubilisation of waste activated sludge by ultrasonic treatment. Chem Eng J 106:163–169

    Article  Google Scholar 

  129. Bordeleau EL, Droste RL (2011) Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion. Water Sci Technol 63:291–296

    Article  Google Scholar 

  130. Mendez JM, Jimenez BE, Barrios JA (2002) Improved alkaline stabilization of municipal wastewater sludge. Water Sci Technol 46:139–146

    Google Scholar 

  131. Neyens E, Baeyens J, Creemers C (2003) Alkaline thermal sludge hydrolysis. J Hazard Mater 97:295–314

    Article  Google Scholar 

  132. Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672

    Google Scholar 

  133. Ara E, Sartaj M, Kennedy K (2014) Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge. Waste Manage Res 32:1200–1209

    Article  Google Scholar 

  134. Callaghan FJ, Wase DAJ, Thayanithy K, Foster CF (1999) Co-digestion of waste organic solids: batch studies. Biores Technol 67:117–122

    Article  Google Scholar 

  135. Agdag ON, Sponza DT (2007) Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J Hazard Mater 140:75–85

    Article  Google Scholar 

  136. Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Biores Technol 74:3–16

    Article  Google Scholar 

  137. Kaparaju P, Ellegaard L, Angelidaki I (2009) Optimization of biogas production from manure through serial digestion: lab-scale and pilot-scale studies. Biores Technol 100:701–709

    Google Scholar 

  138. Wilkie AC, Castro HF, Cubisnki KR, Owens JM, Yan SC (2004) Fixed-film anaerobic digestion of flushed dairy manure after primary treatment: wastewater production and characterisation. Biosyst Eng 89:457–471

    Article  Google Scholar 

  139. Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ (2013) High-rate biogas production from waste textiles using two-stage process. Renew Energy 52:128–135

    Article  Google Scholar 

  140. Boe K, Angelidaki I (2009) Serial CSTR digester configuration for improving biogas production from manure. Water Res 43:166–172

    Article  Google Scholar 

  141. Smith DP, McCarty PL (1989) Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnol Bioeng 34:885–895

    Article  Google Scholar 

  142. Boe K (2006) Online monitoring and control of the biogas process. Ph.D. thesis, Technical University of Denmark

    Google Scholar 

  143. Boe K, Batstone DJ (2005) Optimisation of serial CSTR biogas reactors using modeling by ADM1. In: Proceedings of the first international workshop on the IWA Anaerobic Digestion Model No. 1 (ADM1), 2–4 Sept 2005, Lyngby, Denmark, pp 219–221

    Google Scholar 

  144. Ge HQ, Jensen PD, Batstone DJ (2011) Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. J Hazard Mater 187:355–361

    Article  Google Scholar 

  145. Dyken SV, Bakken BH, Skjelbred HI (2010) Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy 35:1338–1350

    Article  Google Scholar 

  146. Kaewluan S, Pipatmanomai S (2011) Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed. Fuel Process Technol 92:671–677

    Article  Google Scholar 

  147. Cucek L, Varbanov PS, Kleme JJ, Kravanja Z (2012) Total footprints-based multi- criteria optimisation of regional biomass energy supply chains. Energy 44:135–145

    Article  Google Scholar 

  148. Gold S, Seuring S (2011) Supply chain and logistics issues of bio-energy production. J Cleaner Prod 19:32–42

    Article  Google Scholar 

  149. Becker DR, Moseley C, Lee C (2011) A supply chain analysis framework for assessing state-level forest biomass utilization policies in the United States. Biomass Bioenergy 35:1429–1439

    Article  Google Scholar 

  150. Chiang KY, Chien KL, Lu CH (2012) Characterization and comparison of biomass produced from various sources: suggestions for selection of pretreatment technologies in biomass-to-energy. Appl Energy 100:164–171

    Article  Google Scholar 

  151. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  152. Acharjee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Biores Technol 102:4849–4854

    Google Scholar 

  153. Son Y, Yoon SJ, Kim YK, Lee JG (2011) Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass Bioenergy 35:4215–4220

    Article  Google Scholar 

  154. Wongchanapai S, Iwai H, Saito M, Yoshida H (2012) Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system. J Power Sources 216:314–322

    Article  Google Scholar 

  155. Buragohain B, Mahanta P, Moholkar VS (2010) Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis. Energy 35:2557–2579

    Article  Google Scholar 

  156. Kumar A, Demirel Y, Jones DD, Hanna MA (2010) Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Biores Technol 101:3696–3701

    Google Scholar 

  157. Abuadala A, Dincer I (2010) Investigation of a multi-generation system using a hybrid steam biomass gasification for hydrogen, power and heat. Int J Hydrogen Energy 35:13146–13157

    Article  Google Scholar 

  158. Molino A, Giordano G, Motola V, Fiorenza G, Nanna F, Braccio G (2013) Electricity production by biomass steam gasification using a high efficiency technology and low environmental impact. Fuel 103:179–192

    Article  Google Scholar 

  159. Pellegrini LF, Júnior SDO, Burbano JC (2010) Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills. Energy 35:1172–1180

    Article  Google Scholar 

  160. Lv P, Yuan Z, Ma L, Wu C, Chen Y, Zhu J (2007) Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renew Energy 32:2173–2185

    Article  Google Scholar 

  161. Yan F, Luo SY, Hu ZQ, Xiao B, Cheng G (2010) Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition. Biores Technol 101:5633–5637

    Article  Google Scholar 

  162. Hosseini M, Dincer I, Rosen MA (2012) Steam and air fed biomass gasification: comparisons based on energy and exergy. Int J Hydrogen Energy 37:16446–16452

    Article  Google Scholar 

  163. Singh RN (2004) Equilibrium moisture content of biomass briquettes. Biomass Bioenergy 26:251–253

    Article  Google Scholar 

  164. Xu G, Murakami T, Suda T, Tani H, Mito Y (2008) Efficient gasification of wet biomass residue to produce middle caloric gas. Particuology 6:376–382

    Article  Google Scholar 

  165. Dong L, Xu G, Suda T (2010) Murakami potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed. Fuel Process Technol 91:882–888

    Google Scholar 

  166. Bang-Moeller C, Rokni M, Elmegaard B, Ahrenfeldt J, Henriksen UB (2013) Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells. Energy 58:527–537

    Article  Google Scholar 

  167. Toonssen R, Sollai S, Aravind PV, Woudstra N, Verkooijen AHM (2011) Alternative system designs of biomass gasification SOFC/GT hybrid systems. Int J Hydrogen Energy 36:10414–10425

    Article  Google Scholar 

  168. Fryda LE, Panopoulos KD, Kakaras E (2008) Integrated combined heat and power with biomass gasification and SOFC-micro gas turbine. VGB PowerTech 88:66–74

    Google Scholar 

  169. Athanasiou C, Coutelieris F, Vakouftsi E, Skoulou V, Antonakou E, Marnellos G, Zabaniotou A (2007) From biomass to electricity through integrated gasification/SOFC system—optimization and energy balance. Int J Hydrogen Energy 32:337–342

    Article  Google Scholar 

  170. Iaquaniello G, Mangiapane A (2006) Integration of biomass gasification with MCFC. Int J Hydrogen Energy 31:399–404

    Article  Google Scholar 

  171. Morita H, Yoshiba F, Woudstra N, Hemmes K, Spliethoff H (2004) Feasibility study of wood biomass gasification/molten carbonate fuel cell power system-comparative characterization of fuel cell and gas turbine systems. J Power Sources 138:31–40

    Article  Google Scholar 

  172. Gómez-Barea A, Leckner B, Perales AV, Nilsson S, Cano DF (2013) Improving the performance of fluidized bed biomass/waste gasifiers for distributed electricity: a new three-stage gasification system. Appl Thermal Eng 50:1453–1462

    Article  Google Scholar 

  173. Kirnbauer F, Wilk V, Hofbauer H (2013) Performance improvement of dual fluidized bed gasifiers by temperature reduction: the behavior of tar species in the product gas. Fuel 108:534–542

    Article  Google Scholar 

  174. Asadullah M (2014) Barriers of commercial power generation using biomass gasification gas: a review. Renew Sustain Energy Rev 29:201–215

    Article  Google Scholar 

  175. Aljbour SH, Kawamoto K (2013) Bench-scale gasification of cedar wood—Part I: effect of operational conditions on product gas characteristics. Chemosphere 90:1495–1500

    Article  Google Scholar 

  176. Aljbour SH, Kawamoto K (2013) Bench-scale gasification of cedar wood—Part II: effect of operational conditions on contaminant release. Chemosphere 90:1501–1507

    Google Scholar 

  177. Chen W, Annamalai K, Ansley RJ, Mirik M (2012) Updraft fixed bed gasification of mesquite and juniper wood samples. Energy 41:454–461

    Article  Google Scholar 

  178. Calvo LF, Gil MV, Otero M, Morán A, García AI (2012) Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Biores. Technol. 109:206–214

    Google Scholar 

  179. Song T, Wu J, Shen L, Xiao J (2012) Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenergy 36:258–267

    Article  Google Scholar 

  180. Meng X, Jong WD, Fu N, Verkooijen AHM (2011) Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: effects of operational conditions on product gas distribution and tar formation. Biomass Bioenergy 35:2910–2924

    Article  Google Scholar 

  181. Ngo SI, Nguyen TDB, Lim Y, Song BH, Lee UD, Choi YT et al (2011) Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model. Appl Energy 88:5208–5220

    Article  Google Scholar 

  182. Jordan CA, Akay G (2012) Occurrence, composition and dew point of tars produced during gasification of fuel cane bagasse in a downdraft gasifier. Biomass Bioenergy 42:51–58

    Article  Google Scholar 

  183. Olgun H, Ozdogan S, Yinesor G (2011) Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues. Biomass Bioenergy 35:572–580

    Article  Google Scholar 

  184. Sheth PN, Babu BV (2009) Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Biores Technol 100:3127–3133

    Google Scholar 

  185. Jaojaruek K, Jarungthammachote S, Gratuito MKB, Wongsuwan H, Homhual S (2011) Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach. Biores Technol 102:4834–4840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Turco .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turco, M., Ausiello, A., Micoli, L. (2016). Processes of Biogas Production: Anaerobic Digestion and Thermal Gasification. In: Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-03215-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03215-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03214-6

  • Online ISBN: 978-3-319-03215-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics