Skip to main content

Indoor Pose Estimation Using 3D Scene Landmarks for Service Robotics

  • Chapter
  • First Online:
Issues and Challenges of Intelligent Systems and Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 530))

  • 587 Accesses

Abstract

In this paper, a markerless approach for estimating the pose of a robot using only 3D visual information is presented. As opposite to traditional methods, our approach makes use of 3D features solely for determining a relative position between the imaged scene (e.g. landmarks present on site) and the robot. Such a landmark is calculated from stored 3D map of the environment. The recognition of the landmark is performed via a 3D Object Retrieval (3DOR) search engine. The presented pose estimation technique produces a reliable and accurate pose information which can be further used for complex scene understanding and/or navigation. The performance of the proposed approach has been evaluated against a traditional marker-based position estimation library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. Shape Modeling International June (2004)

    Google Scholar 

  2. Grigorescu, S.M., Macesanu, G., Cocias, T.T., Puiu, D., Moldoveanu, F.: Robust camera pose and scene structure analysis for service robotics. Robot. Auton. Syst. 59, 899–909 (2011)

    Article  Google Scholar 

  3. Grigorescu, S.M.: On robust 3D scene perception and camera egomotion estimation. In: Proceedings of the 33rd Colloquium of Automation, Leer, Germany (2011)

    Google Scholar 

  4. Grinstead, B., Koschan, A., Gribok, A., Abidi, M.A., Gorsich, D.: Outlier rejection by oriented tracks to aid pose estimation from video. Pattern Recogn. Lett. 27(1), 37–48 (2006)

    Article  Google Scholar 

  5. Grigorescu, S.M., Pangercic, D., Beetz, M.: 2D–3D Collaborative tracking (23CT): towards stable robotic manipulation. In: Proceedings of the 2012 IEEE International Conference on Intelligent Robots and Systems IROS, Workshop on Active Semantic Perception, Vilamoura, Algarve, Portugal (October 7–12, 2012)

    Google Scholar 

  6. Malbezin, P., Piekarski, W., Thomas B.: Measuring ARToolKit accuracy in long distance tracking experiments. 1st International Augmented Reality Toolkit Workshop, Darmstadt, Germany (2002)

    Google Scholar 

  7. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. ICCV. 1, 755–762 (2001)

    Google Scholar 

  8. Hartley, R.I.: An object-oriented approach to scene reconstruction. IEEE International Conference on Systems, Man, and Cybernetics, New York, 4, 2475–2480 (1996)

    Google Scholar 

  9. Zhang, H., Fiume, E.: Shape matching of 3-D contours using normalized fourier descriptors. Proceedings of the Shape Modeling, international (SMI02), 261–268 (2002)

    Google Scholar 

  10. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39(3), 441–471 (September 2008)

    Google Scholar 

  11. Tombari, F., Salti S., Di Stefano, L.: Unique signatures of histograms for local surface description. 11th European Conference on Computer Vision (ECCV), Hersonissos, Greece, 356–369 (September 5–11, 2010)

    Google Scholar 

  12. Heider, P., Pierre-Pierre, A., Li, R., Grimm, C.: Local shape descriptors, a survey and evaluation. Eurographics Workshop on 3D Object Retrieval, 49–57 (2011)

    Google Scholar 

  13. Cech, J., Matas, J., Perdoch, M.: Efficient sequential correspondence selection by cosegmentation. IEEE Trans. PAMI 32(9), 1568–1581 (2010)

    Article  Google Scholar 

  14. Min, P., Halderman, J.A., Kazhdan, M., Funkhouser, T.A.: Early experiences with a 3D model search engineering. Web3D, Symposium, 7–18 (2003)

    Google Scholar 

  15. Johnson, A.E.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. PAMI 21(5), 433–449 (1999)

    Article  Google Scholar 

  16. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: Proceedings of the IEEE international conference on Robotics and Automation (ICRA’09) IEEE Press. Piscataway, NJ, USA, 1848–1853 (2009)

    Google Scholar 

  17. Sajjanhar, A., Lu, G., Zhang, D., Hou, J., Zhou, W., Chen, P.: Spectral shape descriptor using spherical harmonics. Integr. Comput.-Aided Eng. 17(2) 167–173 (April 2010).

    Google Scholar 

  18. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    Google Scholar 

  19. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: NARF: 3D range image features for object recognition. International Conference on Intelligent Robots and Systems (2010).

    Google Scholar 

  21. Computer Modelling of Heritage [online] Available: http://www.cast.uark.edu/home/research/archaeology-and-historic-preservation/archaeological-geomatics/archaeological-laser-scanning/laser-scanning-at-machu-picchu.html (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiberiu T. Cocias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cocias, T.T., Grigorescu, S.M., Moldoveanu, F. (2014). Indoor Pose Estimation Using 3D Scene Landmarks for Service Robotics. In: Kóczy, L., Pozna, C., Kacprzyk, J. (eds) Issues and Challenges of Intelligent Systems and Computational Intelligence. Studies in Computational Intelligence, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-319-03206-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03206-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03205-4

  • Online ISBN: 978-3-319-03206-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics