Skip to main content

A Hierarchical Approach for Handwritten Digit Recognition Using Sparse Autoencoder

  • Chapter
  • First Online:
Issues and Challenges of Intelligent Systems and Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 530))

Abstract

Higher level features learning algorithms have been applied on handwritten digit recognition and got more promising results than just using raw intensity values with classification algorithms. However, the approaches of these algorithms still not take the advantage of specific characteristics of data. We propose a new method to learn higher level features from specific characteristics of data using sparse autoencoder. The main key of our appoarch is to divide the handwritten digits into subsets corresponding to specific characteristics. The experimental results show that the proposed method achieves lower error rates and time complexity than the original approach of sparse autoencoder. The results also show that the more correlated characteristics we define, the better higher level features we learn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagnell, J.A., Bradley, D.M.: Differentiable sparse coding. In: NIPS. pp. 113–120 (2008)

    Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR. vol. 1, pp. 886–893 (2005)

    Google Scholar 

  3. DeCoste, D., Schölkopf, B.: Training invariant support vector machines. Mach. Learn. 46(1–3), 161–190 (2002)

    Google Scholar 

  4. Grosse, R., Raina, R., Kwong, H., Andrew, Y.Ng.: Shift-invariance sparse coding for audio classification. CoRR, abs/1206.5241, 2012.

    Google Scholar 

  5. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lennig M., Hunt, M., Mermelstein, P.: Experiments in syllable-based recognition of continuous speech. In: Proceedings of International Conference on Acoustics, Speech and, Signal Processing, pp. 880–883 (1996)

    Google Scholar 

  8. Huth, A.G., Gallant, J.L., Vu, A.T., Nishimoto, S.: A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76(6), 1210–1224 (2012)

    Article  Google Scholar 

  9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, H.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE. vol. 86, pp. 2278–2324 (1998)

    Google Scholar 

  10. Lee, H., Battle, A., Raina, R., Andrew, Y.Ng.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems. vol. 19, pp. 801–808 (2007)

    Google Scholar 

  11. Lee, H., Grosse, R., Ranganath, R., Andrew, Y.Ng.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML. p. 77 (2009)

    Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Google Scholar 

  13. Martens, J.: Deep learning via hessian-free optimization. In: Fürnkranz, J., Joachims, T.,(eds.) Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, pp. 735–742 June 2010

    Google Scholar 

  14. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  15. Raina, R., Battle, A., Lee, H., Packer, B., Andrew Y.Ng.: Self-taught learning: Transfer learning from unlabeled data. In: ICML ’07: Proceedings of the 24th International Conference on, Machine learning (2007)

    Google Scholar 

  16. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–962 (2003)

    Google Scholar 

  17. Socher, R., Eric, H., Pennin, J., Andrew, Y.Ng, Manning, C.D.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q., (eds.) Proceeding of 24th Advances in Neural Information Processing Systems, pp. 801–809 (2011)

    Google Scholar 

  18. Kai. Y., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Proceeding of 24th Advances in Neural Information Processing Systems, NIPS, pp. 2223–2231 (2009) (Curran Associates Inc.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An T. Duong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duong, A.T., Phan, H.T., Le, N.DH., Tran, S.T. (2014). A Hierarchical Approach for Handwritten Digit Recognition Using Sparse Autoencoder. In: Kóczy, L., Pozna, C., Kacprzyk, J. (eds) Issues and Challenges of Intelligent Systems and Computational Intelligence. Studies in Computational Intelligence, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-319-03206-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03206-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03205-4

  • Online ISBN: 978-3-319-03206-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics