Skip to main content

Earth’s Mantle Melting and Volcanism

  • Chapter
  • First Online:
Sea Floor Exploration

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

Convection currents inside the Earth’s asthenosphere will cause instability at shallow depths in the mantle. Rising material and subsequent decompression melting will form hot, upwelling mantle plumes or diapirs. This phenomenon is more common on slow spreading ridges (total rate <5 cm/yrs), rather than beneath fast (total rate >5 cm/yrs) spreading ridge segments with their extensive fissural magmatism. Magma upwelling after partial melting of the mantle will depend on the force of buoyancy and on the permeability of the lithosphere. The effects of permeability and buoyancy will be modified by tectonic stress-release as well as by compression due to spreading following a cooling of the lithosphere. Instability in the melting zone is related to pressure release during a period without magma extraction. If pressure is released during spreading, the heat supply will generate more melting. With increased tension, the melting zone expands laterally and deepens until enough melt aggregates and accumulates in a confined zone to form a magma chamber. Rapid migration of melt through fissures at shallow depths enables a release of tension in the magmatic zone as it undergoes periods of melting and magma accumulation. When this process is repeated several times, it will trigger successive arrivals of more deep-seated magma, which can replenish the magma reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avedik F, Geli L (1987) Single channel seismic data from the East Pacific Rise axis between 11°504′N and 12°54′N. Geology 15:857–860

    Article  Google Scholar 

  • Ballard RD, Holcomb RT, van Andel TH (1979) The Galapagos Rift at 86°W: sheet flows, collapsed pits, and lava lakes of the rift valley. J Geophys Res 84:5407–5422

    Article  Google Scholar 

  • Batiza R (1980) Origin and petrology of young oceanic central volcanoes: are most tholeiitic rather than alkalic? Geology 8:477–483

    Article  Google Scholar 

  • Batiza R (1981) Quantitative data on the abundance and distribution of seamounts in the Pacific Ocean. McDonnell Center for Space Sciences Pub. MCP-498, p 23

    Google Scholar 

  • Batiza R, Fornari DJ, Vanko DA, Lonsdale P (1984) Craters, calderas, and hyaloclastites on young Pacific seamounts. J Geophys Res 89:8371–8390

    Article  Google Scholar 

  • Bideau D, Hekinian R, Sichler B, Gracia E, Bollinger C, Constantin M, Guivel C (1998) Contrasting volcanic-tectonic processes during the past 2 Ma on the Mid-Atlantic Ridge: submersible mapping, petrological and magnetic results at latitude 34°52′N and 33°55′N. Mar Geophys Res 20:425–458

    Google Scholar 

  • Binard N, Hekinian R, Cheminee J-L, Searle C (1991) Morphological and structural studies of the society and Austral hot spot regions in the South Pacific. Tectonophysics 186:293–312

    Article  Google Scholar 

  • Binard N, Hekinian R, Cheminée J-L, and Stoffers P (1992) Styles of eruptive activity on intraplate volcanoes. J Geophys Res 97(13):999–14015

    Google Scholar 

  • Bischoff JL, Pitzer KS (1989) Liquid-vapor relations for the system NaCl-H2O: summary of the P-T-x surface from 300 °C to 500 °C. Am Jour Sci 289:217–248

    Article  Google Scholar 

  • Bischoff JL, Pitzer KS (1985) Phase relation and seafloor hydrothermal systems. Earth Planet Sci lett 75:327–338

    Article  Google Scholar 

  • Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melt: solubility, speciation and stable carbon isotope behavior. Rev Miner 30:157–186

    Google Scholar 

  • Blong R (1984) Volcanic hazards. Academic Press, New York, p 424

    Google Scholar 

  • Bonatti E, Harrison CG (1988) Eruption styles of basalt in oceanic spreading ridges and seamounts: effects of magma temperature and viscosity. J Geophys Res 93:2967–2980

    Article  Google Scholar 

  • Bottinga Y, Javoy M (1989) MORB degassing evolutions of CO2. Earth Planet Sci Lett 95:215–225

    Article  Google Scholar 

  • Broecker WS (1985) How to build a habitable planet. ELDIGIO Press, New York

    Google Scholar 

  • Burton MR, Mader HM, Polacci MM (2007) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett 264:46–60

    Article  Google Scholar 

  • Cayol V, Dieterich J. Okamura A, Miklius A (2000) High magma storage rates before the 1983 eruption of kilauea, Hawaii. Science, 288:2343–2346

    Google Scholar 

  • Chaigneau M, Hekinian R, Cheminée J-L (1980) Magmatic gases extracted and analysed from ocean floor volcanics. Bull Volcanl 43–1:241–253

    Article  Google Scholar 

  • Clague DA, Davis AS, Bischoff JL, Dixon JE, Geyer R (2000) Lava bubble formed by submarine hydrovolcanic explosion on Lo’ihi Seamount and Kilauea Volcano. Bull Volcanol 61(7):437–449

    Article  Google Scholar 

  • Cromie WJ (1962) Earthquakes. Science services, vol 1. Nelson Doubleday Inc. Garden city, p 64

    Google Scholar 

  • Cyamex Scientific Team (1978) Découverte par submersible de sulfures polymétalliques massifs sur la dorsale du Pacifique oriental par 21°N (projet Rita). Compte Rendu Acad Sci Serie D, 287:1365–1368

    Google Scholar 

  • Detrick RSP, Buhl P, Vern E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multi-channel imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41

    Article  Google Scholar 

  • Eissen P, Fouquet Y, Hardy D, and Ondréas H (2004) Recent MORB volcaniclastic explosive deposits formed between 500 and 1750 m.b.s.l. on the axis of the Mid-Atlantic Ridge, south of the Azores. Am Geophys Union Geophys Monogr 140. doi: 10.1020/140GM09

  • Fisher RV and Schmincke H-U, (1984) Pyroclastic rocks. Springer, Berlin, p 472

    Google Scholar 

  • Fisher VR, Heiken K, Hulen JB (1998) Volcanoes; Crucible of change. Princeton University Press, Princeton, p 317

    Google Scholar 

  • Fornari DJ, William BF, Ryan WBF, Fox PJ (1984) Sea floor lava fields on the East Pacific Rise geology 13:413–416

    Google Scholar 

  • Francheteau J, Juteau T, Rangin C (1979) Basaltic pillars in collapsed lava pools on the deep sea floor. Nature 281:209–211

    Article  Google Scholar 

  • Francis P (1995) Volcanoes: a planetary perspective. Oxford University Press, New York, p 443

    Google Scholar 

  • Gill J, Torssander P, Lapierre H, Taylor R, Kaiho K, Koyama M, Kusarabe M, Aitchinson J, Cisowski K, Dadey K, Fujiioka A, Klaus K, Lovell M, Marsaglia K, Pezard P, Taylor B, Tazaki K (1990) Explosive deep water basalt in the Sumisu backarc rift. Science 248:1214–1217

    Article  Google Scholar 

  • Halmer MM (2005) Have volcanoes already passed their zenith influencing the ozone layer? Terra Nova 17:500–5005

    Article  Google Scholar 

  • Hart SR, Zindler A, (1989) Constraints on the nature and development of chemical heterogeneities in the mantle. In: Peltier WR (ed) Mantle convection. Gordon Breach Publishers, New York, pp 261–387

    Google Scholar 

  • Head JW, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271

    Article  Google Scholar 

  • Hekinian R, Binard N (2008) Le Feu des Abysses. Editions QUAE, c/o Inra, RD 10, 78026. Versailles, France, p 175

    Google Scholar 

  • Hekinian R, Chaigneau M, Cheminée J-L (1973) Popping rocks and lava tubes from the Mid-Atlantic Rift Valley at 36°N. Nature, 245 n° 5425, pp 371–373

    Google Scholar 

  • Hekinian R, Thompson G, Bideau D (1989) Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12°38′–12°51′N and 11°26′–11°30′N. J Geophys Res 94:17437–17463

    Google Scholar 

  • Hekinian R, Bideau D, Stoffers P, Chiminée J-L, Muhe R, Binard N (1991) Submarine intraplate volcanism in the South Pacific: geological setting and petrology. J Geophys Res 96:2109–2138

    Article  Google Scholar 

  • Hekinian R, Pineau F, Shilobreeva S, Bideau D, Gracia E, Javoy M (2000) Deep sea explosive activity on the Mid-Atlantic Ridge near 34°50′N: magma composition, vesicularity and volatile content. J Volc Geotherm Res 98:49–77

    Article  Google Scholar 

  • Jaupart C (1996) Physical models of volcanic eruptions. Chem Geol 128:217–227

    Article  Google Scholar 

  • Javoy M, Pineau F (1991) The volatile record of popping rocks from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in vesicles. Earth Planet Sci Lett 107:598–611

    Article  Google Scholar 

  • Katili JA, Sudradjat A (1984) The devastating 1983 eruption of Colo Volcano, Una-Una Island, Central Sulawesi, Indonesia. Geol Jahrb Reihe A 75:27–47

    Google Scholar 

  • Lagabrielle Y, Auzende J-M, Eisen J-Ph, Janin M-C, Cotten J (1994) Geology and geochemistry of a 800 m section through young upper oceanic crust in the North Fiji Basin (Southwest Pacific). Mar Geol 116:113–132

    Article  Google Scholar 

  • Lopes RMC (2005) The volcano adventure guide. Cambridge University Press, illustrated edition, ISBN 0-521-55453-5, 11 p

    Google Scholar 

  • Lupton JE, Craig H (1981) A major Helium-3 source at 15°S on the East Pacific Rise. Science 214:13–18

    Article  Google Scholar 

  • Macdonald KC (1982) Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Am Rev Earth Planet Sci 10:155–190

    Google Scholar 

  • McBirney AR (1963) Factors governing the nature of submarine volcanism. Bull Volcanol 26:455–469

    Google Scholar 

  • McLain JS, Orcutt JA, Barnett K (1985) The East Pacific rise in cross-section: a seismic model. J Geophys Res 90:8627–8639

    Article  Google Scholar 

  • Moore RB (1991) Geology of three late quaternary stratovolcanoes on Sao Miguel, Azores. US Geol Surv Bull 1900:1–26

    Google Scholar 

  • Murase T, McBirney AR (1963) Viscosity and related property of volcanic rocks at 800–1400 °C. Hokkaido Univ Fac Sc J ser 7(1):487–584

    Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rock and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592

    Article  Google Scholar 

  • Nayudu YR (1962) The submarine eruption of basalts and the problem of palagonitization. In: International symposium on volcanology, Japan, p. 49 (abstract)

    Google Scholar 

  • Nicolas A, Freydier Cl, Godard M, Vauchez A, (1993) Magma chambers at oceanic ridges: how large? Geology 21:53–56

    Google Scholar 

  • Ondreas H, Fouquet Y, Voisset M, Radford-Knoery J (1997) Detailed study of three contiguous segments of the Mid-Atlantic Ridge, south of the Azores (37°–38°30′N), using acoustic imaging coupled with submersible observations. Mar Geophys Res 19:231–255

    Article  Google Scholar 

  • Park J, Anderson K, Aster R Butler R, Lay T, Simpson D (2005) Global seismographic network records the great Sumatra-Adaman Earthquake. Eos Trans Am Geophys Union 86:57–61

    Google Scholar 

  • Perfit MR, Chadwick WW Jr (1998) Magamtism at Mid-Ocean Ridges: constraints from volcanological and geochemical investigations. In: Faulting and magmatism at Mid-Ocean Ridges, Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Geophysical Monograph, 106:59–115

    Google Scholar 

  • Pineau F, Shilobreeva S, Hekinian R, Bideau D, Javoy M (2004) Deep-sea explosive activity on the Mid-Atlantic Ridge near 34°50′N: a stable isotope (C, H, O) study. Chem Geol 211(1–2):159–175

    Article  Google Scholar 

  • Pinneau F, Shilobreeva S, Hekinian R, Bideau D, Javoy M (1998) Explosive activity on the sea floor purely magmata c or magma-seawater interaction origin? Geochemical and isotopic arguments. Goldschmidt Conference. Toulouse, France, pp 1185–1186

    Google Scholar 

  • Rampino MR, Self S (1984) The atmospheric effects of El Chichon. Sci Amer 250(1):48–57

    Article  Google Scholar 

  • Rittmann A (1944) Vulcani, activi e genesi, Napoli, Editrice Politecnica, p 305

    Google Scholar 

  • Rosendahl BR, Raitt RW, Dorman LM, Bibee LD, Hussong DM, Sutton GH (1976) Evolution of oceanic crust 1. A physical odel of the East Pacific Rise crest derived from seismic refraction data. J Geophys Res 81(29):5294–5304

    Article  Google Scholar 

  • Rutherford MJ, Gardner JE (2000) Rates of Magma ascent. In: Encyclopedia of Volcanoes, Sigurdsson H, Haougthon BC, McNutt SR, Rymer H, Stix J (eds). Academic Press, California, pp 207–217

    Google Scholar 

  • Sigurdsson H, Hougthon BF, McNutt SR, Rymer H, Stix J (2000) Encyclopedia of volcanoes. Academic Press, London, p 1417

    Google Scholar 

  • Simkin T, Fiske RS (1983) A classic geophysical event. Eos Trans Am Geophys Union 64(34):513–514

    Article  Google Scholar 

  • Simkin T, Siebert L (2000) Earth’s volcanoes eruptions: an overview in encyclopedia of volcanoes by Sigurdson H. Elsevier, New York

    Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-Ocean Ridge magma chambers. J Geophys Res 97:197–216

    Article  Google Scholar 

  • Sleep NH, Barth GA (1997) The nature of oceanic lower crust and shallow mantle emplaced at low spreading rates. Tectonophysics 279(1):181–191

    Article  Google Scholar 

  • Smith T, Batiza R (1989) New field and laboratory evidence for the origin of hyaloclastite flows on seamount summits. Bull Volcanol 51:96–114

    Article  Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Rubin K (2007) New insights into Mid-Ocean Ridge volcanic processes from the 2005–2006 eruption of the East Pacific Rise, 9°46′–9°56′N. Geology 35:1079–1082

    Article  Google Scholar 

  • Soule SA, Nakata DS, Fornari DJ, Fundis AT, Perfit MR, Kurz MD (2012) CO2 variability in Mid-Ocean Ridge basalts from syn-emplacement degassing: constraints on eruption dynamics. Earth Planet Sci Lett 327–328:39–48

    Google Scholar 

  • Tilling RI, Kayanagi RY, Lipman P, Lockwood JP, Moore JG, Swanson DA (1975) Earthquake related catastrophic events, Island of Hawaii, November 29, 1975: a preliminary report. US Geol Surv Circular 740:1–32

    Google Scholar 

  • Witmarsh RB (1975) Axial intrusion zone beneath the median valley at the Mid-Atlantic Ridge at 37°N detected by explosion seismology. Geophys J Roy Astron Soc 42:189–215

    Google Scholar 

  • Wright IC, Gamble JA (1999) Southern Kermadec submarine caldera arc volcanoes (SW Pacific): caldera formation by effusive and pyroclastc eruption. Mar Geol 161:207–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Hekinian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hekinian, R. (2014). Earth’s Mantle Melting and Volcanism. In: Sea Floor Exploration. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-03203-0_5

Download citation

Publish with us

Policies and ethics