A New Heuristic Function for DC*

  • Marco Lucarelli
  • Corrado Mencar
  • Ciro Castiello
  • Anna Maria Fanelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)


DC* (Double Clustering with A*) is an algorithm capable of generating highly interpretable fuzzy information granules from pre-classified data. These information granules can be used as bulding-blocks for fuzzy rule-based classifiers that exhibit a good tradeoff between interpretability and accuracy. DC* relies on A* for the granulation process, whose efficiency is tightly related to the heuristic function used for estimating the costs of candidate solutions. In this paper we propose a new heuristic function that is capable of exploiting class information to overcome the heuristic function originally used in DC* in terms of efficiency. The experimental results show that the proposed heuristic function allows huge savings in terms of computational effort, thus making DC* a competitive choice for designing interpretable fuzzy rule-based classifiers.


Goal State Heuristic Function Fuzzy Information Fuzzy Partition Granulation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90(2), 111–127 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Information Sciences 178(24), 4585–4618 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Guillaume, S., Charnomordic, B.: Generating an Interpretable Family of Fuzzy Partitions From Data. IEEE Transactions on Fuzzy Systems 12(3), 324–335 (2004)CrossRefGoogle Scholar
  4. 4.
    Weber, R.: Fuzzy-ID3: A class of methods for automatic knowledge acquisition. In: The Second International Conference on Fuzzy Logic and Neural Networks, pp. 265–268 (1992)Google Scholar
  5. 5.
    Alonso, J.M., Magdalena, L.: HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Computing 15(10), 1959–1980 (2011)CrossRefGoogle Scholar
  6. 6.
    Guillaume, S., Charnomordic, B.: Learning interpretable fuzzy inference systems with FisPro. Information Sciences 181(20), 4409–4427 (2011)CrossRefGoogle Scholar
  7. 7.
    Alonso, J.M., Magdalena, L.: Generating Understandable and Accurate Fuzzy Rule-Based Systems in a Java Environment. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 212–219. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Castellano, G., Fanelli, A.M., Mencar, C., Plantamura, V.L.: Classifying data with interpretable fuzzy granulation. In: Proceedings of the 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on Advanced Intelligent Systems 2006, Tokyo, Japan, pp. 872–877 (2006)Google Scholar
  9. 9.
    Mencar, C., Consiglio, A., Castellano, G., Fanelli, A.M.: Improving the Classification Ability of DC* Algorithm. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 145–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Castellano, G., Fanelli, A.M., Mencar, C.: DCf: A Double Clustering framework for fuzzy information granulation. In: 2005 IEEE International Conference on Granular Computing, pp. 397–400 (2005)Google Scholar
  11. 11.
    Kohonen, T.: Self-organizing maps. Information Sciences, vol. 30. Springer (2001)Google Scholar
  12. 12.
    Lucarelli, M., Castiello, C., Fanelli, A.M., Mencar, C.: Automatic design of interpretable fuzzy partitions with variable granularity: An experimental comparison. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 318–328. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Mencar, C., Lucarelli, M., Castiello, C., Fanelli, A.M.: Design of strong fuzzy partitions from cuts. In: The 8th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2013 (in press, 2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Marco Lucarelli
    • 1
  • Corrado Mencar
    • 1
  • Ciro Castiello
    • 1
  • Anna Maria Fanelli
    • 1
  1. 1.Department of InformaticsUniversity of Bari “A. Moro”BariItaly

Personalised recommendations