Skip to main content

Interpretability of Fuzzy Systems

  • Conference paper
Fuzzy Logic and Applications (WILF 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8256))

Included in the following conference series:

Abstract

Fuzzy systems are convenient tools for modelling complex phenomena because they are capable of conjugating a non-linear behaviour with a transparent description of knowledge in terms of linguistic rules. In many real-world applications, fuzzy systems are designed through data-driven design techniques which, however, often carry out precise systems that are not endowed with knowledge that is interpretable, i.e. easy to read and understand. In a nutshell, interpretability is not granted by the mere adoption of fuzzy logic, this representing a necessary yet not a sufficient requirement for modelling and processing linguistic knowledge. Furthermore, interpretability is a quality that is not easy to define and quantify. Therefore, several open and challenging questions arise while considering interpretability in the design of fuzzy systems, which are briefly considered in this paper along with some answers on the basis of the current state of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L.A.: Is there a need for fuzzy logic? Information Sciences 178(13), 2751–2779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20, 111–161 (1983)

    Article  MathSciNet  Google Scholar 

  3. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. The Psychological Review 63, 81–97 (1956)

    Article  Google Scholar 

  4. Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Information Sciences 178(24), 4585–4618 (2008)

    Article  MathSciNet  Google Scholar 

  5. Zhou, S., Gan, J.: Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems 159(23), 3091–3131 (2008)

    Article  MathSciNet  Google Scholar 

  6. Alonso, J.M., Magdalena, L., González-Rodríguez, G.: Looking for a good fuzzy system interpretability index: An experimental approach. International Journal of Approximate Reasoning 51(1), 115–134 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. Information Sciences 181(20), 4340–4360 (2011)

    Article  Google Scholar 

  8. Botta, A., Lazzerini, B., Marcelloni, F., Stefanescu, D.C.: Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Computing 13(5), 437–449 (2009)

    Article  Google Scholar 

  9. Gacto, M.J., Alcalá, R., Herrera, F.: Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems 18(3), 515–531 (2010)

    Article  Google Scholar 

  10. Mencar, C., Castiello, C., Cannone, R., Fanelli, A.M.: Interpretability assessment of fuzzy knowledge bases: A cointension based approach. International Journal of Approximate Reasoning 52(4), 501–518 (2011)

    Article  MathSciNet  Google Scholar 

  11. Alonso, J.M., Pancho, D.P., Cordón, O., Quirin, A., Magdalena, L.: Social network analysis of co-fired fuzzy rules. In: Yager, R.R., Abbasov, A.M., Reformat, M., Shahbazova, S.N. (eds.) Soft Computing: State of the Art Theory. STUDFUZZ, vol. 291, pp. 113–128. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Casillas, J., Cordón, O., Herrera, F., Magdalena, L.: Interpretability issues in fuzzy modeling. STUDFUZZ, vol. 128. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  13. Casillas, J., Cordón, O., Herrera, F., Magdalena, L.: Accuracy improvements in linguistic fuzzy modeling. STUDFUZZ, vol. 129. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  14. Riid, A., Rüstern, E.: Identification of transparent, compact, accurate and reliable linguistic fuzzy models. Information Sciences 181(20), 4378–4393 (2011)

    Article  Google Scholar 

  15. Fazzolari, M., Alcalá, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A review of the application of multi-objective evolutionary fuzzy systems: Current status and further directions. IEEE Transactions on Fuzzy Systems 21(1), 45–65 (2013)

    Article  Google Scholar 

  16. Ducange, P., Marcelloni, F.: Multi-objective evolutionary fuzzy systems. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 83–90. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Lucarelli, M., Castiello, C., Fanelli, A.M., Mencar, C.: Automatic Design of Interpretable Fuzzy Partitions with Variable Granularity: An Experimental Comparison. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 318–328. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Cannone, R., Castiello, C., Mencar, C., Fanelli, A.M.: A Study on Interpretability Conditions for Fuzzy Rule-Based Classifiers. In: IEEE Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, Pisa, Italy, pp. 438–443 (November 2009)

    Google Scholar 

  19. Pulkkinen, P., Hytonen, J., Koivisto, H.: Developing a bioaerosol detector using hybrid genetic fuzzy systems. Engineering Applications of Artificial Intelligence 21(8), 1330–1346 (2008)

    Article  Google Scholar 

  20. Vanbroekhoven, E., Adriaenssens, V., Debaets, B.: Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning 44(1), 65–90 (2007)

    Article  MathSciNet  Google Scholar 

  21. Guillaume, S., Charnomordic, B.: Interpretable fuzzy inference systems for cooperation of expert knowledge and data in agricultural applications using FisPro. In: IEEE International Conference on Fuzzy Systems, pp. 2019–2026 (2010)

    Google Scholar 

  22. Gadaras, I., Mikhailov, L.: An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artificial Intelligence in Medicine 47(1), 25–41 (2009)

    Article  Google Scholar 

  23. Alonso, J.M., Castiello, C., Lucarelli, M., Mencar, C.: Modelling interpretable fuzzy rule-based classifiers for medical decision support. In: Magdalena, R., Soria, E., Guerrero, J., Gómez-Sanchis, J., Serrano, A. (eds.) Medical Applications of Intelligent Data Analysis: Research Advancements, pp. 254–271. IGI Global (2012)

    Google Scholar 

  24. Carmona, C.J., Gonzalez, P., del Jesus, M.J., Navio-Acosta, M., Jimenez-Trevino, L.: Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft Computing 15(12), 2435–2448 (2011)

    Article  Google Scholar 

  25. Kumar, A.: Interpretability and mean-square error performance of fuzzy inference systems for data mining. Intelligent Systems in Accounting, Finance and Management 13(4), 185–196 (2005)

    Article  Google Scholar 

  26. Cheong, F.: A hierarchical fuzzy system with high input dimensions for forecasting foreign exchange rates. International Journal of Artificial Intelligence and Soft Computing 1(1), 15 (2008)

    Article  Google Scholar 

  27. Ghandar, A., Michalewicz, Z., Zurbruegg, R.: Enhancing profitability through interpretability in algorithmic trading with a multiobjective evolutionary fuzzy system. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 42–51. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Altug, S., Chow, M.Y., Trussell, H.J.: Heuristic constraints enforcement for training of and rule extraction from a fuzzy/neural architecture. II. Implementation and application. IEEE Transactions on Fuzzy Systems 7(2), 151–159 (1999)

    Article  Google Scholar 

  29. Riid, A., Rustern, E.: Interpretability of fuzzy systems and its application to process control. In: IEEE International Conference on Fuzzy Systems, pp. 1–6 (2007)

    Google Scholar 

  30. Alonso, J.M., Ocaña, M., Hernandez, N., Herranz, F., Llamazares, A., Sotelo, M.A., Bergasa, L.M., Magdalena, L.: Enhanced WiFi localization system based on Soft Computing techniques to deal with small-scale variations in wireless sensors. Applied Soft Computing 11(8), 4677–4691 (2011)

    Article  Google Scholar 

  31. Alonso, J.M., Magdalena, L., Guillaume, S., Sotelo, M.A., Bergasa, L.M., Ocaña, M., Flores, R.: Knowledge-based intelligent diagnosis of ground robot collision with non detectable obstacles. Journal of Intelligent and Robotic Systems 48(4), 539–566 (2007)

    Article  Google Scholar 

  32. Mucientes, M., Casillas, J.: Quick design of fuzzy controllers with good interpretability in mobile robotics. IEEE Transactions on Fuzzy Systems 15(4), 636–651 (2007)

    Article  Google Scholar 

  33. Barrientos, F., Sainz, G.: Interpretable knowledge extraction from emergency call data based on fuzzy unsupervised decision tree. Knowledge-Based Systems 25(1), 77–87 (2011)

    Article  Google Scholar 

  34. Troiano, L., Rodríguez-Muñiz, L.J., Ranilla, J., Díaz, I.: Interpretability of fuzzy association rules as means of discovering threats to privacy. International Journal of Computer Mathematics 89(3), 325–333 (2012)

    Article  Google Scholar 

  35. Bargiela, A., Pedrycz, W.: Granular computing: an introduction. Kluwer Academic Publishers, Boston (2003)

    Book  Google Scholar 

  36. Alonso, J., Cordon, O., Quirin, A., Magdalena, L.: Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams. In: 1st World Conference on Soft Computing, San Francisco, CA, USA, pp. 181.1–181.8 (2011)

    Google Scholar 

  37. Bargiela, A., Pedrycz, W.: Human-Centric Information Processing Through Granular Modelling. Springer Publishing Company, Incorporated (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Mencar, C. (2013). Interpretability of Fuzzy Systems. In: Masulli, F., Pasi, G., Yager, R. (eds) Fuzzy Logic and Applications. WILF 2013. Lecture Notes in Computer Science(), vol 8256. Springer, Cham. https://doi.org/10.1007/978-3-319-03200-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03200-9_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03199-6

  • Online ISBN: 978-3-319-03200-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics