Advertisement

Interpretability of Fuzzy Systems

  • Corrado Mencar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

Fuzzy systems are convenient tools for modelling complex phenomena because they are capable of conjugating a non-linear behaviour with a transparent description of knowledge in terms of linguistic rules. In many real-world applications, fuzzy systems are designed through data-driven design techniques which, however, often carry out precise systems that are not endowed with knowledge that is interpretable, i.e. easy to read and understand. In a nutshell, interpretability is not granted by the mere adoption of fuzzy logic, this representing a necessary yet not a sufficient requirement for modelling and processing linguistic knowledge. Furthermore, interpretability is a quality that is not easy to define and quantify. Therefore, several open and challenging questions arise while considering interpretability in the design of fuzzy systems, which are briefly considered in this paper along with some answers on the basis of the current state of research.

Keywords

Fuzzy System Fuzzy Rule Fuzzy Model Linguistic Variable Linguistic Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: Is there a need for fuzzy logic? Information Sciences 178(13), 2751–2779 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20, 111–161 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. The Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  4. 4.
    Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Information Sciences 178(24), 4585–4618 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhou, S., Gan, J.: Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems 159(23), 3091–3131 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alonso, J.M., Magdalena, L., González-Rodríguez, G.: Looking for a good fuzzy system interpretability index: An experimental approach. International Journal of Approximate Reasoning 51(1), 115–134 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. Information Sciences 181(20), 4340–4360 (2011)CrossRefGoogle Scholar
  8. 8.
    Botta, A., Lazzerini, B., Marcelloni, F., Stefanescu, D.C.: Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Computing 13(5), 437–449 (2009)CrossRefGoogle Scholar
  9. 9.
    Gacto, M.J., Alcalá, R., Herrera, F.: Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems 18(3), 515–531 (2010)CrossRefGoogle Scholar
  10. 10.
    Mencar, C., Castiello, C., Cannone, R., Fanelli, A.M.: Interpretability assessment of fuzzy knowledge bases: A cointension based approach. International Journal of Approximate Reasoning 52(4), 501–518 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Alonso, J.M., Pancho, D.P., Cordón, O., Quirin, A., Magdalena, L.: Social network analysis of co-fired fuzzy rules. In: Yager, R.R., Abbasov, A.M., Reformat, M., Shahbazova, S.N. (eds.) Soft Computing: State of the Art Theory. STUDFUZZ, vol. 291, pp. 113–128. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Casillas, J., Cordón, O., Herrera, F., Magdalena, L.: Interpretability issues in fuzzy modeling. STUDFUZZ, vol. 128. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Casillas, J., Cordón, O., Herrera, F., Magdalena, L.: Accuracy improvements in linguistic fuzzy modeling. STUDFUZZ, vol. 129. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Riid, A., Rüstern, E.: Identification of transparent, compact, accurate and reliable linguistic fuzzy models. Information Sciences 181(20), 4378–4393 (2011)CrossRefGoogle Scholar
  15. 15.
    Fazzolari, M., Alcalá, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A review of the application of multi-objective evolutionary fuzzy systems: Current status and further directions. IEEE Transactions on Fuzzy Systems 21(1), 45–65 (2013)CrossRefGoogle Scholar
  16. 16.
    Ducange, P., Marcelloni, F.: Multi-objective evolutionary fuzzy systems. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 83–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Lucarelli, M., Castiello, C., Fanelli, A.M., Mencar, C.: Automatic Design of Interpretable Fuzzy Partitions with Variable Granularity: An Experimental Comparison. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 318–328. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Cannone, R., Castiello, C., Mencar, C., Fanelli, A.M.: A Study on Interpretability Conditions for Fuzzy Rule-Based Classifiers. In: IEEE Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, Pisa, Italy, pp. 438–443 (November 2009)Google Scholar
  19. 19.
    Pulkkinen, P., Hytonen, J., Koivisto, H.: Developing a bioaerosol detector using hybrid genetic fuzzy systems. Engineering Applications of Artificial Intelligence 21(8), 1330–1346 (2008)CrossRefGoogle Scholar
  20. 20.
    Vanbroekhoven, E., Adriaenssens, V., Debaets, B.: Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning 44(1), 65–90 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Guillaume, S., Charnomordic, B.: Interpretable fuzzy inference systems for cooperation of expert knowledge and data in agricultural applications using FisPro. In: IEEE International Conference on Fuzzy Systems, pp. 2019–2026 (2010)Google Scholar
  22. 22.
    Gadaras, I., Mikhailov, L.: An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artificial Intelligence in Medicine 47(1), 25–41 (2009)CrossRefGoogle Scholar
  23. 23.
    Alonso, J.M., Castiello, C., Lucarelli, M., Mencar, C.: Modelling interpretable fuzzy rule-based classifiers for medical decision support. In: Magdalena, R., Soria, E., Guerrero, J., Gómez-Sanchis, J., Serrano, A. (eds.) Medical Applications of Intelligent Data Analysis: Research Advancements, pp. 254–271. IGI Global (2012)Google Scholar
  24. 24.
    Carmona, C.J., Gonzalez, P., del Jesus, M.J., Navio-Acosta, M., Jimenez-Trevino, L.: Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft Computing 15(12), 2435–2448 (2011)CrossRefGoogle Scholar
  25. 25.
    Kumar, A.: Interpretability and mean-square error performance of fuzzy inference systems for data mining. Intelligent Systems in Accounting, Finance and Management 13(4), 185–196 (2005)CrossRefGoogle Scholar
  26. 26.
    Cheong, F.: A hierarchical fuzzy system with high input dimensions for forecasting foreign exchange rates. International Journal of Artificial Intelligence and Soft Computing 1(1), 15 (2008)CrossRefGoogle Scholar
  27. 27.
    Ghandar, A., Michalewicz, Z., Zurbruegg, R.: Enhancing profitability through interpretability in algorithmic trading with a multiobjective evolutionary fuzzy system. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 42–51. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Altug, S., Chow, M.Y., Trussell, H.J.: Heuristic constraints enforcement for training of and rule extraction from a fuzzy/neural architecture. II. Implementation and application. IEEE Transactions on Fuzzy Systems 7(2), 151–159 (1999)CrossRefGoogle Scholar
  29. 29.
    Riid, A., Rustern, E.: Interpretability of fuzzy systems and its application to process control. In: IEEE International Conference on Fuzzy Systems, pp. 1–6 (2007)Google Scholar
  30. 30.
    Alonso, J.M., Ocaña, M., Hernandez, N., Herranz, F., Llamazares, A., Sotelo, M.A., Bergasa, L.M., Magdalena, L.: Enhanced WiFi localization system based on Soft Computing techniques to deal with small-scale variations in wireless sensors. Applied Soft Computing 11(8), 4677–4691 (2011)CrossRefGoogle Scholar
  31. 31.
    Alonso, J.M., Magdalena, L., Guillaume, S., Sotelo, M.A., Bergasa, L.M., Ocaña, M., Flores, R.: Knowledge-based intelligent diagnosis of ground robot collision with non detectable obstacles. Journal of Intelligent and Robotic Systems 48(4), 539–566 (2007)CrossRefGoogle Scholar
  32. 32.
    Mucientes, M., Casillas, J.: Quick design of fuzzy controllers with good interpretability in mobile robotics. IEEE Transactions on Fuzzy Systems 15(4), 636–651 (2007)CrossRefGoogle Scholar
  33. 33.
    Barrientos, F., Sainz, G.: Interpretable knowledge extraction from emergency call data based on fuzzy unsupervised decision tree. Knowledge-Based Systems 25(1), 77–87 (2011)CrossRefGoogle Scholar
  34. 34.
    Troiano, L., Rodríguez-Muñiz, L.J., Ranilla, J., Díaz, I.: Interpretability of fuzzy association rules as means of discovering threats to privacy. International Journal of Computer Mathematics 89(3), 325–333 (2012)CrossRefGoogle Scholar
  35. 35.
    Bargiela, A., Pedrycz, W.: Granular computing: an introduction. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  36. 36.
    Alonso, J., Cordon, O., Quirin, A., Magdalena, L.: Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams. In: 1st World Conference on Soft Computing, San Francisco, CA, USA, pp. 181.1–181.8 (2011)Google Scholar
  37. 37.
    Bargiela, A., Pedrycz, W.: Human-Centric Information Processing Through Granular Modelling. Springer Publishing Company, Incorporated (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Corrado Mencar
    • 1
  1. 1.University of Bari “A. Moro”Italy

Personalised recommendations