Advertisement

Rule Learning in a Fuzzy Decision Support System for the Environmental Risk Assessment of GMOs

  • Francesco Camastra
  • Angelo Ciaramella
  • Valeria Giovannelli
  • Matteo Lener
  • Valentina Rastelli
  • Salvatore Sposato
  • Antonino Staiano
  • Giovanni Staiano
  • Alfredo Starace
Conference paper
  • 1.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

Aim of the paper is the application of a Learning Classifier System (LCS) to learn the inference rules in a Fuzzy Decision Support System (FDSS). The FDSS is used for the Environmental Risk Assessment (ERA) of the deliberate release of genetically modified plants. The evaluation process permits identifying potential impacts that can achieve one or more receptors through a set of migration paths. The risk assessment in the FDSS is obtained by using a Fuzzy Inference System performed using jFuzzyLogic library. For the human experts might be hard developing complex FISs. We propose to use a LCS for automatically learning the appropriate fuzzy rules from the questionnaires produced by notifiers, named Fuzzy Rule Learning System (FRLS). FRLS is based on a special kind of LCS, namely the eXtended Classifier System (XCS). The derived rules have been validated on real world cases by the human experts that are in charge of ERA.

Keywords

Learning Classifier System eXtended Classifier System Fuzzy Decision Support System Risk Assessment Genetically Modified Organisms jFuzzyLogic library 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y.-L., Weng, C.-H.: Mining fuzzy association rules from questionnaire data. Knowledge-Based Systems 22, 46–56 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Zhao, L., Lee, K.: Environmental risk assessment of offshore produced water discharges using a hybrid fuzzy-stochastic modeling approach. Environmental Modelling & Software 25, 782–792 (2010)CrossRefGoogle Scholar
  3. 3.
    Ciaramella, A., Tagliaferri, R., Pedrycz, W.: The genetic development of ordinal sums. Fuzzy Sets and Systems 151(2), 303–325 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cingolani, P., Alcala-Fdez, J.: jFuzzyLogic: A Robust and Flexible Fuzzy-Logic Inference System Language Implementation. In: Proceedings of IEEE World Congress on Computational Intelligence 2012, June 10-15 (2012)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)Google Scholar
  6. 6.
    Davidson, V.J., Ryks, J., Fazil, A.: Fuzzy risk assessment tool for microbial hazards in food systems. Fuzzy Sets and Systems 157, 1201–1210 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Holland, J., Reitman, J.: Cognitive systems based on adaptive agents. In: Waterman, D.A., Inand, F., Hayes-Roth (eds.) Pattern-Directed Inference Systems (1978)Google Scholar
  8. 8.
    Holland, J.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading (1996)Google Scholar
  9. 9.
    Kahraman, C., Kaya, I.: Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment 15, 789–810 (2009)CrossRefGoogle Scholar
  10. 10.
    Karimi, I., Hullermeier, E.: Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems 158, 987–999 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    International Electrotechnical Commission technical committee industrial process measurement and control2. IEC 61131 - Programmable Controllers. Part 7: Fuzzy Control Programming. IEC 2000 (2000)Google Scholar
  12. 12.
    Lin, C.-T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall (1996)Google Scholar
  13. 13.
    Parr, T.J., Quong, R.W.: Software: Practice and Experience 25(7), 789–810 (1995)Google Scholar
  14. 14.
    Sorlini, C., Buiatti, M., Burgio, G., Cellini, F., Giovannelli, V., Lener, M., Massari, G., Perrino, P., Selva, E., Spagnoletti, A., Staiano, La, G.: valutazione del rischio ambientale dell’ immissione deliberata nell’ ambiente di organismi geneticamente modificati. Tech. Report (2003) (in Italian), http://bch.minambiente.it/EN/Biosafety/propmet.asp
  15. 15.
    Stolzmann, W.: Anticipatory classifier systems. In: Proceedings of the 3rd Annual Genetic Programming Conference, pp. 658–664 (1998)Google Scholar
  16. 16.
    Urbanowicz, R.J., Moore, J.H.: Learning Classifier Systems: A Complete Introduction, Review, and Roadmap. Journal of Artificial Evolution and Applications 2009, Article ID 736398, 25 pages (2009)Google Scholar
  17. 17.
    Wang, Y.-M., Elhag, T.M.S.: An adaptive neuro-fuzzy inference system for bridge risk assessment. Expert Systems with Applications 34, 3099–3106 (2008)CrossRefGoogle Scholar
  18. 18.
    Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1–18 (1994)CrossRefGoogle Scholar
  19. 19.
    Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Francesco Camastra
    • 1
  • Angelo Ciaramella
    • 1
  • Valeria Giovannelli
    • 2
  • Matteo Lener
    • 2
  • Valentina Rastelli
    • 2
  • Salvatore Sposato
    • 1
  • Antonino Staiano
    • 1
  • Giovanni Staiano
    • 2
  • Alfredo Starace
    • 1
  1. 1.Dept. of Science and TechnologyUniversity of Naples “Parthenope”NapoliItaly
  2. 2.Nature Protection Dept.Institute for Environmental Protection and Research (ISPRA)RomaItaly

Personalised recommendations