Advertisement

Shape Annotation by Incremental Semi-supervised Fuzzy Clustering

  • Giovanna Castellano
  • Anna Maria Fanelli
  • Maria Alessandra Torsello
Conference paper
  • 1.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

Automatic image annotation is an important and challenging task when managing large image collections. In this paper, we present an incremental approach for shape labeling, which is useful to image annotation when new sets of images are available during time. Every time new shape images are available, a semi-supervised fuzzy clustering algorithm is used to group shapes into a number of clusters by exploiting knowledge about classes expressed as a set of pre-labeled shapes. Each cluster is represented by a prototype that is manually labeled and used to annotate shapes. To capture the evolution of the image set, the previously discovered prototypes are added as pre-labeled shapes to the current shape set before clustering. The performance of the proposed incremental approach is evaluated on an image dataset from the fish domain, which is divided into chunks of data to simulate the progressive availability of shapes during time.

Keywords

image annotation shape clustering semi-supervised fuzzy clustering incremental fuzzy clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasi, S., Mokhtarian, F., Kittler, J.: SQUID Demo Dataset 1,500 (1997), http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
  2. 2.
    Bartolini, I., Ciaccia, P., Patella, M.: WARP: Accurate retrieval of shapes using phase of Fourier descriptors and Time warping distance. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(1), 142–147 (2005)CrossRefGoogle Scholar
  3. 3.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  4. 4.
    Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  5. 5.
    Castellano, G., Fanelli, A.M., Torsello, M.A.: A fuzzy set approach for shape-based image annotation. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 236–243. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Castellano, G., Fanelli, A.M., Torsello, M.A.: Fuzzy image labeling by partially supervised shape clustering. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 84–93. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chapelle, O., Schoelkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  8. 8.
    Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: Theory and practice. IEEE Trans. on Knowledge and Data Engineering 15(3), 515–528 (2003)CrossRefGoogle Scholar
  9. 9.
    Hore, P., Hall, L., Goldgof, D., Cheng, W.: Online fuzzy c means. In: Fuzzy Information Processing Society, NAFIPS 2008, pp. 1–5 (2008)Google Scholar
  10. 10.
    Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: 2006 SIAM Conference on Data Mining, pp. 328–339 (2006)Google Scholar
  11. 11.
    Yixin, C., Tu, L.: Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM (2007)Google Scholar
  12. 12.
    Lew, M., Sebe, N., Djeraba, C., Lifl, F., Ramesh, J.: Content-based Multimedia Information Retrieval: State of the Art and Challenges. ACM Transactions on Multimedia Computing, Communications, and Applications, 1–19 (2006)Google Scholar
  13. 13.
    Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision. IEEE Transaction System Man Cybernetics 27(5), 787–795 (1997)CrossRefGoogle Scholar
  14. 14.
    Ruiz, C., Menasalvas, E., Spiliopoulou, M.: C-denStream: Using domain knowledge on a data stream. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 287–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analisys and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  16. 16.
    Veltkamp, R., Tanase, M.: Content-based image retrieval systems: a survey. Technical Report (2001)Google Scholar
  17. 17.
    Wu, J., Xiong, H., Chen, J.: Adapting the right measures for k-means clustering. In: Proceedings of the KDD 2009 Conference, pp. 877–885. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Giovanna Castellano
    • 1
  • Anna Maria Fanelli
    • 1
  • Maria Alessandra Torsello
    • 2
  1. 1.Computer Science DepartmentUniversity of BariBariItaly
  2. 2.Dep. of Informatics, Systems and CommunicationUniversity of Milano BicoccaMilanoItaly

Personalised recommendations