Advertisement

A Fuzzy System for Background Modeling in Video Sequences

  • Elisa Calvo-Gallego
  • Piedad Brox
  • Santiago Sánchez-Solano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

Many applications in video processing require the background modeling as a first step to detect the moving objects in the scene. This paper presents an approach that calculates the updating weight of a recursive adaptive filter using a fuzzy logic system. Simulation results prove the advantages of the fuzzy approach versus conventional methods such as temporal filters.

Keywords

Background subtraction moving object detection video surveillance fuzzy logic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piccardi, M.: Background Subtraction Techniques: a Review. In: IEEE International Conference Systems, Man, Cybernetics (SMC) 2004, pp. 3099–3104. IEEE Press, New York (2004)Google Scholar
  2. 2.
    Hassanpour, H.: Video Frame’s Background Modeling: Reviewing the Techniques. Journal of Signal and Information 2(2), 72–78 (2011)CrossRefGoogle Scholar
  3. 3.
    Lo, B.P.L., Velastin, S.A.: Automatic Congestion Detection System for Underground Platforms. In: International Symposium on Intelligent Multimedia, Video and Speech Processing (ISIMP) 2001, pp. 158–161. IEEE Press, New York (2001)Google Scholar
  4. 4.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, Shadows in Video Streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)CrossRefGoogle Scholar
  5. 5.
    Bouwmans, T., El Baf, F., Vachon, B.: Statistical Background Modeling for Foreground Detection: A Survey. In: Handbook of Pattern Recognition and Computer Vision, vol. 4, ch. 3, part 2, pp. 181–199. World Scientific Publishing (2010)Google Scholar
  6. 6.
    Bouwmans, T.: Recent advanced statistical background modeling for foreground detection: A systematic survey. Recent Patents on Computer Science 4(3) (September 2011)Google Scholar
  7. 7.
    Wren, C., Azarbayejani, A., Darrel, T., Pentland, A.P.: Pfinder: Real-time Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)CrossRefGoogle Scholar
  8. 8.
    Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-time Tracking. In: Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 1999, pp. 246–252. IEEE Press, New York (1999)Google Scholar
  9. 9.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Subtraction. In: Vernon, D. (ed.) ECCV 2000, Part II. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Butler, D., Bove, V., Shridharan, S.: Real Time Adaptive Foreground/Background Segmentation. In: EURASIP, pp. 2292–2304 (2005)Google Scholar
  11. 11.
    Culbrik, D., Marques, O., Socek, D., Kalva, H., Furht, B.: Neural Network Approach to Background Modeling for Video Object Segmentation. IEEE Transaction on Neural Networks 18(6), 1614–1627 (2007)CrossRefGoogle Scholar
  12. 12.
    Messelodi, S., Modena, C.M., Segata, N., Zanin, M.: A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 163–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Bouwmans, T.: Background Subtraction For Visual Surveillance: A Fuzzy Approach. In: Handbook on Soft Computing for Video Surveillance, ch. 5, pp. 103–138. Taylor and Francis Group (2012)Google Scholar
  14. 14.
    Bouwmans, T., El Baf, E.F.: Modeling of Dynamic Backgrounds by Type-2 Fuzzy Gaussians Mixture Models. MASAUM Journal of Basics and Applied Sciences 1(2), 265–277 (2009)Google Scholar
  15. 15.
    Maddalena, L., Petrosino, A.: A Fuzzy Spatial Coherence-Based Approach to Bbackground/Foreground Separation for Moving Object Detection. In: Neural Computing and Applications, vol. 19, pp. 179–186. Springer, London (2010)Google Scholar
  16. 16.
    El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy Integral for Moving Object Detection. In: International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1729–1736. IEEE Press, New York (2008)Google Scholar
  17. 17.
    Sigari, M., Mozayani, N., Pourreza, H.: Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application. International Journal of Computer Science and Network Security 8(2), 138–143 (2008)Google Scholar
  18. 18.
    Baturone, I., Moreno-Velo, F.J., Sánchez-Solano, S., Barriga, A., Brox, P., Gersnoviez, A., Brox, M.: Using Xfuzzy Environment for the Whole Design of Fuzzy Systems. In: International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE Press, New York (2007)Google Scholar
  19. 19.
    Fuzzy Logic Design Tools, http://www2.imse-cnm.csic.es/Xfuzzy/

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Elisa Calvo-Gallego
    • 1
  • Piedad Brox
    • 1
  • Santiago Sánchez-Solano
    • 1
  1. 1.Instituto de Microelectrónica de Sevilla (IMSE-CNM)CSIC-University of SevilleSevilleSpain

Personalised recommendations