Advertisement

Neighbor-Based Similarities

  • Stefano Rovetta
  • Francesco Masulli
  • Hassan Mahmoud
Conference paper
  • 1.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

We present an overview of association criteria that build upon the relative position of a set of reference data items with respect to given query data items, and propose fuzzy generalizations that allows to use these criteria as real-valued similarity measures. Some experimental consistency tests are also presented.

Keywords

Fuzzy Number Data Item Heat Kernel Spectral Cluster Fuzzy Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yager, R.R., Detyniecki, M., Bouchon-Meunier, B.: A context-dependent method for ordering fuzzy numbers using probabilities. Information Sciences 138(1), 237–255 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and Other Kernel-based Learning Methods). Cambridge University Press (2000)Google Scholar
  3. 3.
    Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3(2), 177–200 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ridella, S., Rovetta, S., Zunino, R.: IAVQ–interval-arithmetic vector quantization for image compression. IEEE Transactions on Circuits and Systems 47(12, Pt. II), 1378–1390 (2000)CrossRefGoogle Scholar
  6. 6.
    Rovetta, S., Masulli, F.: Vector quantization and fuzzy ranks for image reconstruction. Image and Vision Computing 25(2), 204–213 (2006)CrossRefGoogle Scholar
  7. 7.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fix, E., Hodges, J.L.: Discriminatory analysis. nonparametric discrimination: Consistency properties. Project Number 21-49-004 4, USAF School of Aviation Medicine, Randolph Field, Texas, USA (February 1951)Google Scholar
  9. 9.
    Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Info. Theory IT-13, 21–27 (1967)CrossRefGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, Chichester (1973)zbMATHGoogle Scholar
  11. 11.
    Ridella, S., Rovetta, S., Zunino, R.: K-winner machines for pattern classification. IEEE Transactions on Neural Networks 12(2), 371–385 (2001)CrossRefGoogle Scholar
  12. 12.
    Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man and Cybernetics (4), 580–585 (1985)Google Scholar
  13. 13.
    Duin, R.P., Pękalska, E.: The dissimilarity space: Bridging structural and statistical pattern recognition. Pattern Recognition Letters 33(7), 826–832 (2012)CrossRefGoogle Scholar
  14. 14.
    de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Proceedings NIPS, vol. 15, pp. 721–728 (2003)Google Scholar
  15. 15.
    Filippone, M., Masulli, F., Rovetta, S.: Clustering in the membership embedding space. International Journal of Knowledge Engineering and Soft Data Paradigms 1(4), 363–375 (2009)CrossRefGoogle Scholar
  16. 16.
    Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers C22, 1025–1034 (1973)CrossRefGoogle Scholar
  17. 17.
    Rovetta, S., Masulli, F.: Shared farthest neighbor approach to clustering of high dimensionality, low cardinality data. Pattern Recognition 39(12), 2415–2425 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)Google Scholar
  19. 19.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugenics 7(Pt. II), 179–188 (1936)CrossRefGoogle Scholar
  20. 20.
    Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete gradient clustering algorithm for features analysis of X-ray images. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 15–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  22. 22.
    Nadler, B., Galun, M.: Fundamental limitations of spectral clustering. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 1017–1024. MIT Press, Cambridge (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Stefano Rovetta
    • 1
  • Francesco Masulli
    • 1
    • 2
  • Hassan Mahmoud
    • 1
  1. 1.University of GenoaItaly
  2. 2.Temple UniversityPhiladelphiaUSA

Personalised recommendations