Advertisement

Evaluation and Ranking of Intuitionistic Fuzzy Quantities

  • Luca Anzilli
  • Gisella Facchinetti
  • Giovanni Mastroleo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

We deal with the problem of evaluating and ranking intuitionistic fuzzy quantitities (IFQs). We call IFQ an intuitionistic fuzzy set (IFS) described by a pair of fuzzy quantities, where a fuzzy quantity is defined as the union of two, or more, convex fuzzy sets that may be non-normal. We suggest an evaluation defined by a pair index based on “value” & “ambiguity” and a ranking method based on them. This new formulation contains as particular cases the ones proposed by Fortemps and Roubens [13], Yager and Filev [24, 25] and follows a completely different approach.

Keywords

Fuzzy quantities Intuitionistic fuzzy quantities Evaluation Ranking Ambiguity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anzilli, L., Facchinetti, G.: Ambiguity of Fuzzy Quantities and a New Proposal for their Ranking. Przeglad Elektrotechniczny-Electrical Review 10b, 280–283 (2012)Google Scholar
  2. 2.
    Anzilli, L., Facchinetti, G.: A political scenario faced by a new evaluation of intuitionistic fuzzy quantities. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part IV. CCIS, vol. 300, pp. 54–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Anzilli, L., Facchinetti, G.: The total variation of bounded variation functions to evaluate and rank fuzzy quantities. International Journal of Intelligent Systems 28, 927–956 (2013)CrossRefGoogle Scholar
  4. 4.
    Anzilli, L., Facchinetti, G., Mastroleo, G.: Evaluation and interval approximation of fuzzy quantities. Accepted for publication in Proceedings of EUSFLAT 2013. Atlantis Press (2013)Google Scholar
  5. 5.
    Atanassov, K.: Intutionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Atanassov, K.: Intutionistic fuzzy sets. Theory and Applications. Physica-Verlag, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Atanassov, K.: Intutionistic fuzzy sets: past, present and future. In: Proceedings of the Third Conference on Fuzzy Logic and Technology (Eusflat 2003), pp. 12–19 (2003)Google Scholar
  8. 8.
    Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. STUDFUZZ, vol. 283. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. STUDFUZZ, vol. 295. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  10. 10.
    Castillo, O.: Type-2 Fuzzy Logic in Intelligent Control Applications. STUDFUZZ, vol. 272. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dubey, D., Mehra, A.: Linear programming with Triangular intuitionistic fuzzy number. In: EUSFLAT-LFA, pp. 563–569 (2011)Google Scholar
  12. 12.
    Facchinetti, G., Pacchiarotti, N.: Evaluations of fuzzy quantities. Fuzzy Sets and Systems 157, 892–903 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems 82, 319–330 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grzegorzewski, P.: Distances and orderings in a family of intuitionistic fuzzy numbers. In: Proceedings of the Third Conference on Fuzzy Logic and Technology (Eusflat 2003), pp. 223–227 (2003)Google Scholar
  15. 15.
    Li, D.-F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Computers and Mathematics with Applications 60, 1557–1570 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Information Sciences 177, 84–110 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mitchell, H.B.: Ranking intuitionistic fuzzy numbers. International Journal of Uncertainity, Fuzziness and Knowledge-Based Systems 12, 377–386 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nan, J.X., Li, D.F.: A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers. International Journal of Computational Intelligence Systems 3, 280–289 (2010)Google Scholar
  19. 19.
    Nayagam, V.L., Vankateshwari, G., Sivaraman, G.: Ranking of intuitionistic fuzzy numbers. In: IEEE International Conference on Fuzzy Systems, pp. 1971–1974 (2008)Google Scholar
  20. 20.
    Nehi, H.M.: A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems 12, 80–86 (2010)MathSciNetGoogle Scholar
  21. 21.
    Su, J.S.: Fuzzy programming based on intervalvalued fuzzy numbers and ranking. International Journal of Contempraroy Mathematical Sciences 2, 393–410 (2007)zbMATHGoogle Scholar
  22. 22.
    Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems 118, 375–385 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Information Sciences 177, 5378–5393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Information Sciences 24, 143–161 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yager, R.R., Filev, D.: On ranking fuzzy numbers using valuations. International Journal of Intelligent Systems 14, 1249–1268 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Luca Anzilli
    • 1
  • Gisella Facchinetti
    • 1
  • Giovanni Mastroleo
    • 1
  1. 1.Department of Management, Economics, Mathematics and StatisticsUniversity of SalentoItaly

Personalised recommendations