Advertisement

Towards Categorical Fuzzy Logic Programming

  • Patrik Eklund
  • M. Ángeles Galán
  • Robert Helgesson
  • Jari Kortelainen
  • Ginés Moreno
  • Carlos Vázquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

In this paper we investigate the shift from two-valued to many-valued logic programming, including extensions involving functorial and monadic constructions for sentences building upon terms. We will show that assigning uncertainty is far from trivial, and the place where uncertainty should be used is also not always clear. There are a number of options, including the use of composed monads, and replacing the underlying category for monads with categories capturing uncertainty in a more canonic way. This is indeed important concerning terms and sentences, as classic logic programming, and also predicate logic for that matter, is not all that clear about the distinctive characters of terms and sentences. Classically, they are sets, and in our approach they are categorical objects subject to being transformed e.g. by transformations between functors. Naive set-theoretic approaches, when dealing e.g. with ‘sets of sentences’ and ‘sets of ground atoms’, may easily lead to confusion and undesirable constructions if generalizations are performed only as a shift from ‘set’ to ‘fuzzy set’. We present some basic results on how adaptation of a strictly categorical framework enables us to be very precise about the distinction between terms and sentences, where predicates symbols become part of a signature which is kept apart from the signature for terms. Implication will not be included in signatures, but appears integrated into our sentence functors. Doing so we are able to relate propositional logic to predicate logic in a more natural way. Integration of uncertainty then becomes much more transparent.

Keywords

Fuzzy logic programming fuzzy terms fuzzy sentences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril - Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, Inc. (1995)Google Scholar
  2. 2.
    Viegas Damásio, C., Moniz Pereira, L.: Monotonic and Residuated Logic Programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets and Systems 117(2), 215–230 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Eilenberg, S., Kelly, G.M.: Closed categories. In: Eilenberg, S., et al. (eds.) Proceedings of the Conference on Categorical Algebra, La Jolla 1965, pp. 421–562. Springer (1966)Google Scholar
  5. 5.
    Eilenberg, S., MacLane, S.: General theory of natural equivalences. Transactions of the American Mathematical Society 58(2), 231–294 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eklund, P., Galán, M.A., Helgesson, R., Kortelainen, J.: Paradigms for many-sorted non-classical substitutions. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic (ISMVL 2011), pp. 318–321 (2011)Google Scholar
  7. 7.
    Eklund, P., Galán, M.A., Helgesson, R., Kortelainen, J.: Fuzzy terms. Fuzzy Sets and Systems (in press)Google Scholar
  8. 8.
    Eklund, P., Galán, M.Á., Helgesson, R., Kortelainen, J.: From Aristotle to Lotfi. In: Seising, R., Trillas, E., Moraga, C., Termini, S. (eds.) On Fuzziness. STUDFUZZ, vol. 298, pp. 147–152. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Eklund, P., Galán, M.A., Helgesson, R., Kortelainen, J.: Fuzzy sentences (in progress)Google Scholar
  10. 10.
    Eklund, P., Galán, M.A., Helgesson, R., Kortelainen, J., Moreno, G., Vázquez, C.: Towards a Categorical Description of Fuzzy Logic Programming. Working paper accepted for presentation in PROLE 2013 (2013)Google Scholar
  11. 11.
    Eklund, P., Ángeles Galán, M., Ojeda-Aciego, M., Valverde, A.: Set functors and generalised terms. In: Proc. IPMU 2000, 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference, pp. III:1595–III:1599 (2000)Google Scholar
  12. 12.
    Galán, M.A.: Categorical Unification. PhD thesis, Umeå University, Department of Computing Science (2004)Google Scholar
  13. 13.
    Goguen, J.A., Burstall, R.M.: INSTITUTIONS: Abstract Model Theory for Specification and Programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Helgesson, R.: Generalized General Logics. PhD thesis, Umeå University, Department of Computing Science (2013)Google Scholar
  15. 15.
    Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K. (ed.) Proc. of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), pp. 701–703. Morgan Kaufmann, Los Angeles (1985)Google Scholar
  16. 16.
    Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Klawonn, F., Kruse, R.: A Łukasiewicz logic based prolog. Mathware and Soft Computing 1, 5–29 (1994)MathSciNetGoogle Scholar
  19. 19.
    Lee, R.C.T.: Fuzzy Logic and the Resolution Principle. Journal of the ACM 19(1), 119–129 (1972)CrossRefGoogle Scholar
  20. 20.
    Li, D., Liu, D.: A fuzzy Prolog database system. John Wiley & Sons, Inc. (1990)Google Scholar
  21. 21.
    Lloyd, J.W.: Foundations of logic programming. Springer (1984)Google Scholar
  22. 22.
    MacLane, S.: Categories for the working mathematician. Springer (1971)Google Scholar
  23. 23.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Meseguer, J.: General logics. In: Ebbinghaus, H.-D. (ed.) Logic Colloquium 1987, pp. 275–329. North-Holland, Granada (1989)Google Scholar
  25. 25.
    Muñoz-Hernández, S., Ceruelo, V.P., Strass, H.: RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog. Information Sciences 181(10), 1951–1970 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ng, R., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Information and Computation 110(1), 42–83 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pavelka, J.: On fuzzy logic I, II, III. Zeitschrift für Math. Logik und Grundlagen der Math. 25, 45–52, 119–134, 447–464 (1979)Google Scholar
  28. 28.
    Rodríguez-Artalejo, M., Romero-Díaz, C.A.: Quantitative logic programming revisited. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 272–288. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Rydeheard, D.E., Burstall, R.M.: A categorical unification algorithm. In: Pitt, D.H., Abramsky, S., Poigné, A., Rydeheard, D.E. (eds.) CTCS. LNCS, vol. 240, pp. 493–505. Springer, Heidelberg (1985)Google Scholar
  30. 30.
    Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Fuzzy Sets and Systems 275, 389–426 (2002)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Shapiro, E.Y.: Logic programs with uncertainties: A tool for implementing rule-based systems. In: Proc. of the 8th International Joint Conference on Artificial Intelligence, IJCAI 1983, Karlsruhe, pp. 529–532 (1983)Google Scholar
  32. 32.
    Subrahmanian, V.S.: On the Semantics of Quantitative Logic Programs. In: Proc. of International Symposium on Logic Programming, pp. 173–182 (1987)Google Scholar
  33. 33.
    van Emden, M.H.: Quantitative deduction and its fixpoint theory. Journal of Logic Programming 3(1), 37–53 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Patrik Eklund
    • 1
  • M. Ángeles Galán
    • 2
  • Robert Helgesson
    • 1
  • Jari Kortelainen
    • 3
  • Ginés Moreno
    • 4
  • Carlos Vázquez
    • 4
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Department of Applied MathematicsUniversity of MálagaMálagaSpain
  3. 3.Department of Electrical Engineering and Information TechnologyMikkeli University of Applied SciencesMikkeliFinland
  4. 4.Department of Computing SystemsUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations