Advertisement

Ranking Triangular Fuzzy Numbers Using Fuzzy Set Inclusion Index

  • Azedine Boulmakoul
  • Mohamed Haitam Laarabi
  • Roberto Sacile
  • Emmanuel Garbolino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8256)

Abstract

In this paper, an original ranking operator is introduced for Triangular Fuzzy Numbers. The purpose is to elaborate fast and efficient algorithms dealing with complicated operations and big data in fuzzy decision-making. The proposed ranking operator takes advantage of the topological relationship of two triangles, besides the Inclusion Index concept — which is an index indicating the Degree of Inclusion in the MIN of two Fuzzy Numbers, a way to approach the ”strongly included in”. Consequently, the ranking result can mostly be deduced directly, allowing an efficient ranking process.

Keywords

Fuzzy Ranking Triangular Fuzzy Numbers Inclusion Index Degree of Inclusion Decision Making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Detyniecki, M., Ronald, R.: Ranking fuzzy numbers using α-weighted valuations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(05), 573–591 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Yao, J., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets and Systems 116(2), 275–288 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wang, Y., Yang, J., Xu, D., Chin, K.: On the centroids of fuzzy numbers. Fuzzy Sets and Systems 157(7), 919–926 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lee-Kwang, H., Lee, J.: A method for ranking fuzzy numbers and its application to decision-making. IEEE Transactions on Fuzzy Systems 7(6), 677–685 (1999)CrossRefGoogle Scholar
  5. 5.
    Boulmakoul, A.: Fuzzy graphs modelling for hazmat telegeomonitoring. European Journal of Operational Research 175(3), 1514–1525 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boulmakoul, A.: Generalized path-finding algorithms on semirings and the fuzzy shortest path problem. Journal of Computational and Applied Mathematics 162(1), 263–272 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boulmakoul, A., Laurini, A., Mouncif, H., Taqafi, G.: Path-finding operators for fuzzy multimodal spatial networks and their integration in mobile gis. In: Proceedings of the 2nd IEEE International Symposium on Signal Processing and Information Technology (2002)Google Scholar
  8. 8.
    Laarabi, M.H., Sacile, R., Boulmakoul, A., Garbolino, E., et al.: An overview of a multiagent-based simulation system for dynamic management of risk related to dangerous goods transport. In: Proceedings IEEE International Systems Conference in Engineering of Complex Systems, pp. 830–835 (April 2013)Google Scholar
  9. 9.
    Roncoli, C., Bersani, C., Sacile, R.: A decentralised control model for the risk-based management of dangerous good transport flows on road. In: 2012 IEEE International Systems Conference (SysCon), pp. 1–5. IEEE (April 2012)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. International Journal of Systems Science 9(6), 613–626 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chiu, C., Wang, W.: A simple computation of min and max operations for fuzzy numbers. Fuzzy Sets and Systems 126(2), 273–276 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Boukezzoula, R., Galichet, S., Foulloy, L.: Min and max operators for fuzzy intervals and their potential use in aggregation operators. IEEE Transactions on Fuzzy Systems 15(6), 1135–1144 (2007)CrossRefGoogle Scholar
  13. 13.
    Bordogna, G., Bosc, P., Pasi, G.: Fuzzy inclusion in database and information retrieval query interpretation. In: Proceedings of the 1996 ACM symposium on Applied Computing, pp. 547–551. ACM (1996)Google Scholar
  14. 14.
    Beg, I., Ashraf, S.: Fuzzy set of inclusion under kleene implicator. Applied and Computational Math. 10(1), 65–77 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. Journal of Mathematical Analysis and Applications 114(2), 409–422 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: Theory and Applications. Prentice Hall, New Jersey (1995)zbMATHGoogle Scholar
  17. 17.
    Kóczy, L., Hirota, K.: Approximate reasoning by linear rule interpolation and general approximation. International Journal of Approximate Reasoning 9(3), 197–225 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (i). Fuzzy Sets and Systems 118(3), 375–385 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, S.: Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems 17(2), 113–129 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chou, S., Dat, L., Yu, V.: A revised method for ranking fuzzy numbers using maximizing set and minimizing set. Computers & Industrial Engineering 61(4), 1342–1348 (2011)CrossRefGoogle Scholar
  21. 21.
    Asady, B., Zendehnam, A.: Ranking fuzzy numbers by distance minimization. Applied Mathematical Modelling 31(11), 2589–2598 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Cheng, C.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems 95(3), 307–317 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Choobineh, F., Li, H.: An index for ordering fuzzy numbers. Fuzzy Sets and Systems 54(3), 287–294 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chu, T., Tsao, C.: Ranking fuzzy numbers with an area between the centroid point and original point. Computers & Mathematics with Applications 43(1), 111–117 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ezzati, R., Allahviranloo, T., Khezerloo, S., Khezerloo, M.: An approach for ranking of fuzzy numbers. Expert Systems with Applications 39(1), 690–695 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, Y.: Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets. Computers & Industrial Engineering 57(1), 228–236 (2009)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Luo, Y.: Area ranking of fuzzy numbers based on positive and negative ideal points. Computers & Mathematics with Applications 58(9), 1769–1779 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Computers & Mathematics with Applications 57(3), 413–419 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, Y., Lee, H.: The revised method of ranking fuzzy numbers with an area between the centroid and original points. Computers & Mathematics with Applications 55(9), 2033–2042 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Abbasbandy, S., Asady, B.: Ranking of fuzzy numbers by sign distance. Information Sciences 176(16), 2405–2416 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cheng, C.: Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets and Systems 107(1), 25–35 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Azedine Boulmakoul
    • 1
  • Mohamed Haitam Laarabi
    • 2
  • Roberto Sacile
    • 2
  • Emmanuel Garbolino
    • 3
  1. 1.LIM/IST Lab., Computer Sciences DepartmentMohammedia Faculty of Sciences and Technology (FSTM)Morocco
  2. 2.Department of Computer science, Bioengineering, Robotics and Systems Engineering (DIBRIS)University of GenoaItaly
  3. 3.Crisis Research Centre (CRC)Mines ParisTechSophia AntipolisFrance

Personalised recommendations