Skip to main content

Effect of Geometrical Parameters on Tensile Properties of Nanotubes

  • Chapter
  • First Online:
Finite Element Modeling of Nanotube Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 942 Accesses

Abstract

There is a large variation of mechanical properties, such as Young’s moduli for nanotubes as indicated from both experimental and theoretical studies. From an early study [1], the experimental values of Young’s modulus of the carbon nanotubes was 1.3 −0.4/+0.6 TPa. While, in another study [2] measured value for Young’s modulus of nanotubes as 0.816 ± 0.41 TPa. The wide variation in the experimental results may be due to the several factors including (i) presence of defects in nanotube specimens and (ii) inherent limitations of current experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998)

    Article  Google Scholar 

  2. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5), 944 (1999)

    Article  Google Scholar 

  3. E. Mohammadpour, in Numerical And Experimental Evaluation Of Carbon Nanotube/Polypropylene Composites Using Nonlinear Finite Element Modeling, Ph. D. thesis, Universiti Teknologi Petronas, 2013

    Google Scholar 

  4. A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43(22), 6832–6854 (2006)

    Article  MATH  Google Scholar 

  5. J.H. Lee, B.S. Lee, Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51(1), 30–42 (2012)

    Article  Google Scholar 

  6. E.J. Hearn, in Mechanics of Materials 2: the mechanics of elastic and plastic deformation of solids and structural materials, vol. 2 (Butterworth-Heinemann, Oxford, 1997)

    Google Scholar 

  7. B.I. Yakobson, C.J. Brabec, J. Bernholc, Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 3, 173–182 (1996)

    Article  Google Scholar 

  8. H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)

    Article  Google Scholar 

  9. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  10. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)

    Article  Google Scholar 

  11. L. Vaccarini, C. Goze, L. Henrard, E. Hernández, P. Bernier, A. Rubio, Mechanical and electronic properties of carbon and boron-nitride nanotubes. Carbon 38, 1681–1690 (2000)

    Article  Google Scholar 

  12. L. Jiang, W. Guo, A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59(6), 1204–1213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)

    Article  Google Scholar 

  14. T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  15. V.N. Popov, V.E. Van Doren, M. Balkanski, Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61(4), 3078 (2000)

    Article  Google Scholar 

  16. O.L. Blakslee, D.G. Proctor, E.L. Seldin, G.B. Spence, T. Weng, Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373–3382 (1970)

    Article  Google Scholar 

  17. G. Overney, W. Zhong, D. Tomanek, Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift für Physik D Atoms (Mol. Clust.) 27(1), 93–96 (1993)

    Article  Google Scholar 

  18. C.-W. Fan, J.-H. Huang, C. Hwu, Y.-Y. Liu, Mechanical Properties of single-walled carbon nanotubes—a finite element approach. Adv. Mater. Res. 33–37, 937–942 (2008)

    Article  Google Scholar 

  19. C.Y.J Cai, T. Yu, S. Yu, Wall thickness of single-walled carbon nanotubes and its Young’s modulus, Phys. Scr. 79 (2009)

    Google Scholar 

  20. K. Tserpes, P. Papanikos, G. Labeas, S. Pantelakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)

    Article  Google Scholar 

  21. K. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)

    Article  Google Scholar 

  22. E. Mohammadpour, M. Awang, Nonlinear finite-element modeling of graphene and single-and multi-walled carbon nanotubes under axial tension. Appl. Phys. A 106(3), 581–588 (2012)

    Article  Google Scholar 

  23. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  24. M. Rossi, M. Meo, On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos. Sci. Technol. 69, 1394–1398 (2009)

    Article  Google Scholar 

  25. S. Xiao, W. Hou, Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions. Fuller. Nanotub. Carbon Nanostruct. 14, 9–16 (2006)

    Article  Google Scholar 

  26. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  27. J. Xiao, B. Gama, J. Gillespiejr, An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  28. J.R. Xiao, J. Staniszewski, J.W. Gillespie Jr, Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos. Struct. 88, 602–609 (2009)

    Article  Google Scholar 

  29. A.V. Bandura, R.A. Evarestov, Ab initio structure modeling of ZrO2 nanosheets and single-wall nanotubes. Comput. Mater. Sci. 65, 395–405 (2012)

    Article  Google Scholar 

  30. D. Dass, R. Prasher, R. Vaid, Analytical study of unit cell and molecular structures of single walled carbon nanotubes. Int. J. Comput. Eng. Res. 2, 1447–1457 (2012)

    Google Scholar 

  31. K. Tibbetts, R. Doe, G. Ceder, Polygonal model for layered inorganic nanotubes. Phys. Rev. B 80(1), 014102 (2009)

    Article  Google Scholar 

  32. R. Ansari, S. Rouhi, M. Mirnezhad, F. Sadeghiyeh, Studying the buckling and vibration characteristics of single-walled zinc oxide nanotubes using a nanoscale finite element model. Appl. Phys. A 112(3), 767–774 (2013)

    Article  Google Scholar 

  33. L.N. Wang, L. Jing-Li, Fabrication and mechanical properties of anodized zirconium dioxide nanotubular arrays. J. Phys. D Appl. Phys. 44(7), 075301 (2011)

    Article  Google Scholar 

  34. L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50), 505702 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awang, M., Mohammadpour, E., Muhammad, I.D. (2016). Effect of Geometrical Parameters on Tensile Properties of Nanotubes. In: Finite Element Modeling of Nanotube Structures. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03197-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03197-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03196-5

  • Online ISBN: 978-3-319-03197-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics