Skip to main content

Linear Finite Element Analysis of Nanotubes

  • Chapter
  • First Online:
Book cover Finite Element Modeling of Nanotube Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1002 Accesses

Abstract

From proven chemical calculations [1], the harmonic functions provide a reasonable approximation to the potential energy of molecular systems in which the bond length is near its equilibrium position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.L. Allinger, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing VI and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  Google Scholar 

  2. T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  3. G.M. Odegarda, T.S. Gatesb, L.M. Nicholsonc, K.E. Wised, Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  4. C. Li, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  5. C.W. Fan, Y.Y. Liu, C. Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009)

    Article  Google Scholar 

  6. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2010)

    Article  Google Scholar 

  7. K. Ahmad, W. Pan, Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos. Sci. Technol. 69, 1016–1021 (2009)

    Article  Google Scholar 

  8. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1997 (1971)

    Google Scholar 

  9. T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3(10), 3098–3102 (2009)

    Article  Google Scholar 

  10. I. Kaplan-Ashiri, R. Tenne, Mechanical properties of WS2 nanotubes. J. Cluster Sci. 18(3), 549–563 (2007)

    Google Scholar 

  11. S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)

    Article  Google Scholar 

  12. A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84(14), 2527–2529 (2004)

    Article  Google Scholar 

  13. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  14. N.L. Allinger, Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics: Wiley, Hoboken (2010)

    Google Scholar 

  15. H. Wan, F. Delale, A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2010)

    Article  MATH  Google Scholar 

  16. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)

    Article  Google Scholar 

  17. J. Xiao, B. Gama, J. Gillespiejr, An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  18. K. Tserpes, P. Papanikos, G. Labeas, S. Pantelakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)

    Article  Google Scholar 

  19. M. Rossi, M. Meo, On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos. Sci. Technol. 69, 1394–1398 (2009)

    Article  Google Scholar 

  20. G. Cao, X. Chen, J.W. Kysar, Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. J. Mech. Phys. Solids 54, 1206–1236 (2006)

    Article  MATH  Google Scholar 

  21. M.A. Caravaca, J.C. Mino, V.J. Pérez, R.A. Casali and C.A.Ponce, Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure. J. Phys. Condens. Matter 21(1) (2009)

    Google Scholar 

  22. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045 (1992)

    Article  Google Scholar 

  23. G.V. Lewis, C.R.A. Catlow, Potential models for ionic oxides. J. Phys. C: Solid State Phys. 18(6), 1149–1156 (1985)

    Article  Google Scholar 

  24. D. Fang, Z. Luo, S. Liu, T. Zeng, L. Liu, J. Xu, W. Xu, Photoluminescence properties and photocatalytic activities of zirconia nanotube arrays fabricated by anodization. Opt. Mater. 35(7), 1461–1466 (2013)

    Article  Google Scholar 

  25. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)

    Google Scholar 

  26. A.R. Yavari, J.J. Lewandowski, J. Eckert, Mechanical properties of bulk metallic glasses. MRS Bull. 32(08), 635–638 (2007)

    Article  Google Scholar 

  27. A. Dwivedi, A.N. Cormack, A computer simulation study of the defect structure of calcia-stabilized zirconia. Philos. Mag. A 61(1), 1–22 (1990)

    Article  Google Scholar 

  28. R.W. Clough, Original formulation of the finite element method. Finite Elem. Anal. Descrip. 7, 89–101 (1990)

    Article  Google Scholar 

  29. P. Kohnke (ed.), ANSYS Theory Reference. (ANSYS, 1999)

    Google Scholar 

  30. M. Saeed, Finite Element Analysis: Theory and Application with ANSYS. Pearson Education, India, 2003

    Google Scholar 

  31. ANSYS Release, 10.0 Documentation (ANSYS Inc., Canonsburg, PA, 2005)

    Google Scholar 

  32. Fluent, ANSYS. 12.0 User’s guide. User Inputs for Porous Media 6, 2009

    Google Scholar 

  33. E. Mohammadpour, Numerical and experimental evaluation of carbon nanotube/polypropylene composites using nonlinear finite element modeling, Ph.D. thesis, Universiti Teknologi Petronas, 2013

    Google Scholar 

  34. K. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)

    Article  Google Scholar 

  35. C.-W. Fan, J.-H. Huang, C. Hwu, Y.-Y. Liu, Mechanical properties of single-walled carbon nanotubes—a finite element approach. Adv. Mater. Res. 33–37, 937–942 (2008)

    Article  Google Scholar 

  36. S. Nulaka, A.R. Allam, S. Kopparthi, Python program to generate atom records from PDB protein files for drug design studies. J. Bioinform. Res. 1, 36–40 (2012)

    Google Scholar 

  37. A.N. Enyashin, S. Gemming, G. Seifert, Simulation of Inorganic Nanotubes, in Materials for Tomorrow: Theory. Experiments and Modeling, ed. by S. Gemming, M. Schreiber, J.-B. Suck (Springer, Berlin, 2010)

    Google Scholar 

  38. A.V. Bandura, R.A. Evarestov, Ab initio structure modeling of ZrO2 nanosheets and single-wall nanotubes. Comput. Mater. Sci. 65, 395–405 (2012)

    Article  Google Scholar 

  39. A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43(22), 6832–6854 (2006)

    Article  MATH  Google Scholar 

  40. BEAM188 3-D Linear Finite Strain Beam [Online] 2009. http://mostreal.sk/html/elem_55/chapter4/ES4-188.htm. Accessed 22 Sept 14

  41. I.D. Muhammad, Non-linear finite element modeling of mechanical behaviour of single-walled Zirconia nanotubes, (Ph.D. thesis), Universiti Teknologi Petronas, 2015

    Google Scholar 

  42. Release, ANSYS “12.0.” ANSYS Theory Reference, (2009)

    Google Scholar 

  43. M. Zakeri, M. Shayanmehr, On the mechanical properties of chiral carbon nanotubes. J. Ultrafine Grained Nanostruct. Mater. 46(1), 1–9 (2013)

    Google Scholar 

  44. J.H. Lee, B.S. Lee, Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51(1), 30–42 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awang, M., Mohammadpour, E., Muhammad, I.D. (2016). Linear Finite Element Analysis of Nanotubes. In: Finite Element Modeling of Nanotube Structures. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03197-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03197-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03196-5

  • Online ISBN: 978-3-319-03197-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics