Skip to main content

Mechanical Behavior of Carbon Nanotube-Reinforced Polymer Composites

  • Chapter
  • First Online:
Book cover Finite Element Modeling of Nanotube Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1005 Accesses

Abstract

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nm, or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.L. Jose-Yacaman, L. Rendon, J. Arenas, M.C.S. Puche, Maya blue paint: an ancient nanostructured material. Science 273(5272), 223–225 (1996)

    Article  Google Scholar 

  2. B.K.G. Theng, Formation and Properties of Clay Polymer Complexes (Elsevier, New York, 1979)

    Google Scholar 

  3. P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, 2003)

    Google Scholar 

  4. Zhiting Tian, Hu Han, Ying Sun, A molecular dynamics study of effective thermal conductivity in nanocomposites. Int. J. Heat Mass Transfer 61, 577 (2013)

    Article  Google Scholar 

  5. S. Zhang, D. Sun, Y. Fu, H. Du, Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Technol. 167(2–3), 13–119 (2003)

    Google Scholar 

  6. S. R. Bakshi, D. Lahiri, A. Argawal, Carbon nanotube reinforced metal matrix composites—A Review. Int. Mater. Rev. 55 (2010)

    Google Scholar 

  7. Evangelos Manias, Nanocomposites: stiffer by design. Nat. Mater. 6(1), 9–11 (2007)

    Article  Google Scholar 

  8. K. Lau, C. Gu, D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. B Eng. 37, 425–436 (2006)

    Article  Google Scholar 

  9. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Article  Google Scholar 

  10. S. Iijima, Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  11. B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes. Topics Appl. Phys 80, 287–327 (2001)

    Article  Google Scholar 

  12. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  13. J.-P.B. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Google Scholar 

  14. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  Google Scholar 

  15. H. Wan, F. Delale, A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2009)

    Article  MATH  Google Scholar 

  16. X.L.C.Y.J. Liu, Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 35, 9–81 (2003)

    Article  Google Scholar 

  17. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883–891 (1995)

    Article  Google Scholar 

  18. G.M. Odegarda, T.S. Gatesb, L.M. Nicholsonc, K.E. Wised, Equivalent-continuum modeling of nano-structured materials. Composites Science and Technology 62, 1869–1880 (2002)

    Article  Google Scholar 

  19. C. Li, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  20. X.L. Chen, Y.J. Liu, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput. Mater. Sci. 29, 1–11 (2004)

    Article  Google Scholar 

  21. R. Andrews, D. Jacques, D. Qian et al., Purification and structural annealing carbon nanotubes at graphitization temperatures. Carbon 39, 1681 (2001)

    Article  Google Scholar 

  22. T. Gates, G. Odegard, S. Frankland, T. Clancy, Computational materials: multi-scale modeling and simulation of nanostructured materials. Compos. Sci. Technol. 65, 2416–2434 (2005)

    Article  Google Scholar 

  23. D.B. Mawhinney, V. Naumenko, A. Kuznetsova et al., Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 6, 213 (2000)

    Article  Google Scholar 

  24. A. Desai, M. Haque, Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct. 43, 1787–1803 (2005)

    Article  Google Scholar 

  25. C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 3873–3875 (2002)

    Article  Google Scholar 

  26. D. Qian, E.C. Dickey, Load transfer and deformation Mechanisms in carbon nanotube- polystyrene composites. Phys. Lett. 76 (2000)

    Google Scholar 

  27. A. Fereidoon, E. Saeedi, B. Ahmadimoghadam, in World Congress on Engineering, pp. 1381–1385. Comparison between different finite element methods for foreseeing the elastic properties of carbon nanotube reinforced epoxy resin composite, 2008

    Google Scholar 

  28. K. Tserpes, P. Papanikos, G. Labeas, S. Pantelakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)

    Article  Google Scholar 

  29. J. Gou, B. Minaie, B. Wang, Z. Liang, C. Zhang, Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31, 225–236 (2004)

    Article  Google Scholar 

  30. C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)

    Article  Google Scholar 

  31. I. Janowska, S. Hajiesmaili, D. Bégin, V. Keller, N. Keller, M.-J. Ledoux et al., Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catal. Today 145, 76–84 (2009)

    Article  Google Scholar 

  32. M.R. Piggott, Load Bearing Fibre Composites (Kluwer Academic Publications, 2002)

    Google Scholar 

  33. M.W. Hyer, S.R. White, Stress analysis of fiber-reinforced composite materials (DEStech Publications, Inc, 2009)

    Google Scholar 

  34. Release, A. N. S. Y. S. 12.0. ANSYS Theory Reference (2009)

    Google Scholar 

  35. H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)

    Article  Google Scholar 

  36. M.A. Bhuiyan, R.V. Pucha, M. Karevan, K. Kalaitzidou, Tensile modulus of carbon nanotube/polypropylene composites—A computational study based on experimental characterization. Comput. Mater. Sci. 50, 2347–2353 (2011)

    Article  Google Scholar 

  37. E.J. Hearn, Mechanics of materials 2: The mechanics of elastic and plastic deformation of solids and structural materials, vol. 2 (Butterworth-Heinemann, 1997)

    Google Scholar 

  38. E. Mohammadpour, Numerical and experimental evaluation of carbon nanotube/polypropylene composites using nonlinear finite element modeling (PhD Thesis, Universiti Teknologi Petronas, 2013)

    Google Scholar 

  39. S. Nemat-Nasser, M. Hori, Micromechanics: overall properties of heterogeneous materials Second Revised ed (Elsevier, 1999)

    Google Scholar 

  40. S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Numerical investigation of elastic mechanical properties of graphene structures. Mater. Des. 31, 4646–4654 (2010)

    Article  MATH  Google Scholar 

  41. P.K. Valavala, G.M. Odegard, Modeling techniques for determination of mechanical properties of polymer nanocomposites. Rev. Adv. Mater. Sci. 9, 34–44 (2005)

    Google Scholar 

  42. M.M. Shokrieh, R. Rafiee, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)

    Article  Google Scholar 

  43. K.H. Kim, W.H. Jo, A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47, 1126–1134 (2009)

    Article  Google Scholar 

  44. J.-P. Salvetat-Delmottea, A. Rubioc, Mechanical properties of carbon nanotubes a fiber digest for beginners. Carbon 40, 1729–1734 (2002)

    Article  Google Scholar 

  45. T. Ogasawara, T. Tsuda, N. Takeda, Stress–strain behavior of multi-walled carbon nanotube/PEEK composites. Compos. Sci. Technol. 71, 73–78 (2011)

    Article  Google Scholar 

  46. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41, 1345–1367 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awang, M., Mohammadpour, E., Muhammad, I.D. (2016). Mechanical Behavior of Carbon Nanotube-Reinforced Polymer Composites. In: Finite Element Modeling of Nanotube Structures. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03197-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03197-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03196-5

  • Online ISBN: 978-3-319-03197-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics