Skip to main content

Nanotubes

  • Chapter
  • First Online:
  • 974 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

A nanometer is one-billionth of a meter, or relatively one ten-thousandth of the thickness of a human hair. A nanometer-scale tube-like structure is called nanotube. It may represent carbon nanotube (CNT), silicon nanotube, boron nitride nanotube, inorganic nanotube, DNA nanotube and membrane nanotube comprising of tubular membrane connected in the middle of cells. Nanotubes are similar to a powder or black soot. The CNTs, representing others, are in reality rolled-up sheets of graphene that establish hollow threads having walls with one atom thickness [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.J.F. Harris, Carbon Nanotubes and Related Structures, 1st edn. (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  2. C. Yan, J. Liu, F. Liu, J. Wu, K. Gao, D. Xue, Tube formation in nanoscale materials. Nanoscale Res. Lett. 3(12), 473–480 (2008)

    Article  Google Scholar 

  3. S.V. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater Sci. 52(5), 699–913 (2007)

    Article  Google Scholar 

  4. P. Yang (ed.), The Chemistry of Nanostructured Materials, vol. 2 (World Scientific, Singapore, 2011)

    Google Scholar 

  5. C.C. Koch, Nanostructured Materials: Processing, Properties and Applications (William Andrew, Norwich, 2006)

    Google Scholar 

  6. R.R.H. Coombs and D.W. Robinsons (eds.), Nanotechnology in Medicine and Biosciences (Gordon and Breach, New York, 1996)

    Google Scholar 

  7. R.E. Smalley, B.I. Yakobson, The future of the fullerenes. Solid State Commun. 107, 597–606 (1998)

    Article  Google Scholar 

  8. S. Iijima, Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  9. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Article  Google Scholar 

  10. E.T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35, 77–80 (2002)

    Article  Google Scholar 

  11. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  12. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  13. J.-P.B. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Google Scholar 

  14. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith et al., Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  Google Scholar 

  15. B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes. Topics Appl. Phys 80, 287–327 (2001)

    Article  Google Scholar 

  16. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Google Scholar 

  17. W. Li, S. Xie, Z. Pan, B. Chang, L. Sun, Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153-1158 (2000)

    Google Scholar 

  18. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  19. E.T. Thostensona, Z. Renb, T.-W. Choua, Advances in the science and technology of carbon nanotubes and their composites a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  20. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883–891 (1995)

    Article  Google Scholar 

  21. J. Vera-Agullo, A. Glória-Pereira, H. Varela-Rizo, J.L. Gonzalez, I. Martin-Gullon, Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Compos. Sci. Technol. 69, 1521–1532 (2009)

    Article  Google Scholar 

  22. I. Janowska, S. Hajiesmaili, D. Bégin, V. Keller, N. Keller, M.-J. Ledoux et al., Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catal. Today 145, 76–84 (2009)

    Article  Google Scholar 

  23. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  24. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638–670 (2011)

    Article  Google Scholar 

  25. D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533 (2002)

    Article  Google Scholar 

  26. J. Coleman, U. Khan, W. Blau, Y. Gunko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  27. S. Wijewardane, Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Sol. Energy 83, 1379–1389 (2009)

    Article  Google Scholar 

  28. P.M. Ajayan, T.W. Ebbesen, Nanometre-size tubes of carbon. Rep. Prog. Phys. 60, 1025–1062 (1997)

    Article  Google Scholar 

  29. R. Tenne, C.N.R. Rao, Inorganic nanotubes. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362(1823), 2099–2125 (2004)

    Article  Google Scholar 

  30. N. Zibouche, A. Kuc, T. Heine, From layers to nanotubes: transition metal disulfides TMS 2. Eur. Phys. J. B: Condens. Matter. Complex Syst. 85, 1–7 (2012)

    Article  Google Scholar 

  31. I.D. Muhammad, M. Awang, O. Mamat and K.Z.K Shaari, Estimating young’s modulus of single-walled zirconia nanotubes using nonlinear finite element modeling. J. Nanomater. (2015)

    Google Scholar 

  32. L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62 (2000)

    Google Scholar 

  33. J. Eichler, U. Eisele, J. Rodel, Mechanical properties of monoclinic zirconia. J. Am. Ceram. Soc. 87(7), 1401–1403 (2004)

    Article  Google Scholar 

  34. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1997 (1971)

    Google Scholar 

  35. T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3(10), 3098–3102 (2009)

    Article  Google Scholar 

  36. K. Ashiri, R. Tenne, Mechanical properties of WS2 nanotubes. J. Cluster Sci. 18(3), 549–563 (2007)

    Google Scholar 

  37. S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)

    Article  Google Scholar 

  38. A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84(14), 2527–2529 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awang, M., Mohammadpour, E., Muhammad, I.D. (2016). Nanotubes. In: Finite Element Modeling of Nanotube Structures. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03197-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03197-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03196-5

  • Online ISBN: 978-3-319-03197-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics