Skip to main content

Molecular Diffusion and Compartmentalization in Signal Transduction Pathways: An Application of Membrane Systems to the Study of Bacterial Chemotaxis

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 7))

Abstract

In this chapter we present an application of membrane systems to the study of intracellular diffusive processes. In particular, a class of membrane systems, called \(\tau \)-DPP, is used for the modeling, simulation and analysis of bacterial chemotaxis. Two different models of this signal transduction pathway are presented. The first is a single volume model used to investigate the properties of bacterial chemotaxis and to analyze the effects of different perturbations (deletion of chemotactic proteins, addition of distinct amounts of external ligand, effect of different methylation states of the receptors) on the system dynamics. The second model represents a multivolume extension of the former, and it is exploited for the analysis of the diffusive processes that give rise to the formation of concentration gradients throughout the bacterial cytoplasm. The outcome of stochastic simulations of both models are exploited to analyze the process of synchronization of flagella, in order to evaluate the running and tumbling time intervals of bacterial cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Ciobanu, G. Păun, M.J. Pérez-Jiménez (eds.), Applications of Membrane Computing (Springer, Berlin, 2005)

    Google Scholar 

  2. G.Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Computing (Oxford University Press, Oxford, 2010)

    Google Scholar 

  3. G. Păun, Membrane Computing. An Introduction (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  4. P systems web page. http://ppage.psystems.eu/

  5. M.S. Jurica, B.L. Stoddard, Mind your B’s and R’s: bacterial chemotaxis, signal transduction and protein recognition. Structure (London, England : 1993), 6(7), 809–813 (1998)

    Google Scholar 

  6. U. Alon, M.G. Surette, N. Barkai, S. Leibler, Robustness in bacterial chemotaxis. Nature 397(6715), 168–171 (1999)

    Article  Google Scholar 

  7. P.A. Spiro, J.S. Parkinson, H.G. Othmer, A model of excitation and adaptation in bacterial chemotaxis. PNAS 94(14), 7263–7268 (1997)

    Article  Google Scholar 

  8. C.J. Morton-Firth, D. Bray, Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192(1), 117–128 (1998)

    Article  Google Scholar 

  9. M.D. Levin, C.J. Morton-Firth, W.N. Abouhamad, R.B. Bourret, D. Bray, Origins of individual swimming behavior in bacteria. Biophys. J. 74(1), 175–181 (1998)

    Article  Google Scholar 

  10. K. Lipkow, S.S. Andrews, D. Bray, Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187(1), 45–53 (2005)

    Article  Google Scholar 

  11. C.V. Rao, J.R. Kirby, A.P. Arkin, Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol. 2(2), E49 (2004)

    Article  Google Scholar 

  12. E. Mosca, P. Cazzaniga, D. Pescini, G. Mauri, L. Milanesi, Modelling spatial heterogeneity and macromolecular crowding with membrane systems, in Proceedings of CMC11-Eleventh International Conference on Membrane Computing, ed. by M. Gheorghe, T. Hinze, G. Pǎun, G. Rozenberg, A. Salomaa, LNCS, Vol. 6501, pp. 285–304 (2011)

    Google Scholar 

  13. K. Takahashi, S. Arjunan, M. Tomita, Space in systems biology of signaling pathways-towards intracellular molecular crowding in silico. FEBS Lett. 579(8), 1783–1788 (2005)

    Article  Google Scholar 

  14. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  15. F. Baras, M. Mansour, Reaction-diffusion master equation: a comparison with microscopic simulations. Phys. Rev. E 54, 6139–6148 (1996)

    Article  Google Scholar 

  16. D.T. Gillespie, General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  17. P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, Tau leaping stochastic simulation method in P systems, in 7th International Workshop on Membrane Computing WMC 2006, ed. by H.J. Hoogeboom, G. Păun, G. Rozenberg, A. Salomaa. LNCS, vol. 4361, pp. 298–313 (2006)

    Google Scholar 

  18. G. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Cao, D.T. Gillespie, L.R. Petzold, Efficient step size selection for the tau-leaping simulation method. Chin. J. Chem. Phys. 124(4), 044109 (2006)

    Article  Google Scholar 

  20. P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, S. Colombo, E. Martegani, Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. J. Biotechnol. 133(3), 377–385 (2008)

    Article  Google Scholar 

  21. D. Pescini, D. Besozzi, C. Zandron, G. Mauri, Analysis and simulation of dynamics in probabilistic P systems, in Proceedings of 11th International Workshop on DNA Computing, DNA11, ed. by A. Carbone, N.A. Pierce, LNCS, vol. 3892 (2006), pp. 236–247

    Google Scholar 

  22. D. Pescini, D. Besozzi, G. Mauri, Investigating local evolutions in dynamical probabilistic P systems, in Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05) (IEEE Computer Press, New York, 2005), pp. 440–447

    Google Scholar 

  23. D. Pescini, D. Besozzi, G. Mauri, C. Zandron, Dynamical probabilistic P systems. Int. J. Found. Comput. Sci. 17(1), 183–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Bren, M. Eisenbach, Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J. Mol. Biol. 312(4), 699–709 (2001)

    Google Scholar 

  25. G.H. Wadhams, J.P. Armitage, Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Bio. 5(12), 1024–1037 (2004)

    Article  Google Scholar 

  26. D. Besozzi, P. Cazzaniga, M. Dugo, D. Pescini, G. Mauri, A study on the combined interplay between stochastic fluctuations and the number of flagella in bacterial chemotaxis. EPTCS 6, 47–62 (2009)

    Article  Google Scholar 

  27. T.S. Shimizu, D. Bray, Modelling the bacterial chemotaxis receptor complex. Novartis Found. Symp. 247, 162–177 (2002)

    Article  Google Scholar 

  28. V. Sourjik, Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12(12), 569–576 (2004)

    Article  Google Scholar 

  29. C.J. Morton-Firth, T.S. Shimizu, D. Bray, A free-energy-based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286(4), 1059–1074 (1999)

    Article  Google Scholar 

  30. G. Li, R.M. Weis, Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100(3), 357–365 (2000)

    Article  Google Scholar 

  31. B.A. Mello, Y. Tu, Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84(5), 2943–2956 (2003)

    Article  Google Scholar 

  32. D. Besozzi, P. Cazzaniga, S. Cocolo, G. Mauri, D. Pescini, Modeling diffusion in a signal transduction pathway: the use of virtual volumes in P systems. Int. J. Found. Comput. Sci. 22(01), 89–96 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. S. Schulmeister, M. Ruttorf, S. Thiem, D. Kentner, D. Lebiedz, V. Sourjik, Protein exchange dynamics at chemoreceptor clusters in Escherichia coli. PNAS 105(17), 6403–6408 (2008)

    Article  Google Scholar 

  34. K. Lipkow, Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2(4), e39 (2006)

    Article  Google Scholar 

  35. K. Lipkow, D. Odde, Model for protein concentration gradients in the cytoplasm. Cell. Mol. Bioeng. 1(1), 84–92 (2008)

    Article  Google Scholar 

  36. D. Bernstein, Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. Phys. Rev. E 71(4), 041103 (2005)

    Article  MathSciNet  Google Scholar 

  37. N. Barkai, S. Leibler, Robustness in simple biochemical networks. Nature 387(6636), 913–917 (1997)

    Article  Google Scholar 

  38. C. Kim, M. Jackson, R. Lux, S. Khan, Determinants of chemotactic signal amplification in Escherichia coli. J. Mol. Biol. 307, 119–135 (2001)

    Article  Google Scholar 

  39. B.E. Scharf, K.A. Fahrner, L. Turner, H.C. Berg, Control of direction of flagellar rotation in bacterial chemotaxis. PNAS 95(1), 201–206 (1998)

    Article  Google Scholar 

  40. M. Eisenbach, A. Wolf, M. Welch, S.R. Caplan, I.R. Lapidus, R.M. Macnab, H. Aloni, O. Asher, Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. J. Mol. Biol. 211(3), 551–563 (1990)

    Article  Google Scholar 

  41. E. Korobkova, T. Emonet, J.M. Vilar, T.S. Shimizu, P. Cluzel, From molecular noise to behavioural variability in a single bacterium. Nature 428(6982), 574–578 (2004)

    Article  Google Scholar 

  42. A. Vaknin, H.C. Berg, Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. PNAS 101(49), 17072–17077 (2004)

    Article  Google Scholar 

  43. Biosimware web page. http://biosimware.disco.unimib.it

Download references

Acknowledgments

Giancarlo Mauri and Dario Pescini acknowledge the partial funding by Regione Lombardia, research project “Network Enabled Drug Design (NEDD)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cazzaniga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G. (2014). Molecular Diffusion and Compartmentalization in Signal Transduction Pathways: An Application of Membrane Systems to the Study of Bacterial Chemotaxis. In: Frisco, P., Gheorghe, M., Pérez-Jiménez, M. (eds) Applications of Membrane Computing in Systems and Synthetic Biology. Emergence, Complexity and Computation, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-03191-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03191-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03190-3

  • Online ISBN: 978-3-319-03191-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics