Advertisement

Fatigue of SMAs

  • Ashwin RaoEmail author
  • A. R. Srinivasa
  • J. N. Reddy
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

With growing applications of SMA components in different engineering applications, the issue of material performance over its designed life is of great concern to researchers lately. Fatigue studies in SMAs is still an unsolved puzzle and we wish to highlight some important items that affect the designers and some open questions in SMA fatigue areas.

Keywords

Shape Memory Effect Martensite Variant Martensite Volume Fraction NiTi SMAs Thermomechanical Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of niti shape memory alloys. Mater Sci Eng A 378(1):24–33CrossRefGoogle Scholar
  2. 2.
    Ramaiah K, Saikrishna C, Ranganath V, Buravalla V, Bhaumik S (2011) Fracture of thermally activated niti shape memory alloy wires. Mater Sci Eng A 528(16):5502–5510CrossRefGoogle Scholar
  3. 3.
    Tobushi H, Ohashi Y, Hori T, Yamamoto H (1992) Cyclic deformation of tini shape-memory alloy helical spring. Exp Mech 32(4):304–308CrossRefGoogle Scholar
  4. 4.
    Tamura H, Mitose K, Suzuki Y (1995) Fatigue properties of ti-ni shape memory alloy springs. J Phys IV 5(8):C8–617Google Scholar
  5. 5.
    Grossmann C, Frenzel J, Sampath V, Depka T, Oppenkowski A, Somsen C, Neuking K, Theisen W, Eggeler G (2008) Processing and property assessment of niti and niticu shape memory actuator springs. Materialwissenschaft und Werkstofftechnik 39(8):499–510Google Scholar
  6. 6.
    Grossmann C, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of niti and niticu shape memory spring actuators. Metall Mater Trans A 40(11):2530–2544CrossRefGoogle Scholar
  7. 7.
    Tobushi H, Hachisuka T, Yamada S, Lin P (1997) Rotating bending fatigue of a tini shape memory alloy wire. Mech Mater 26(1):35–42CrossRefGoogle Scholar
  8. 8.
    de Azevedo Bahia M, Fonseca Dias R, Buono V (2006) The influence of high amplitude cyclic straining on the behaviour of superelastic niti. Int J Fatigue 28(9):1087–1091CrossRefGoogle Scholar
  9. 9.
    Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of ti-50 at.% ni and ti-40ni-10cu (at.%) shape memory alloy wires. Mater Sci Eng A 273:658–663CrossRefGoogle Scholar
  10. 10.
    Miyazaki S (1990) Thermal and stress cycling effects and fatigue properties of ni-ti alloys. Butterworth-Heinemann, Engineering Aspects of Shape, Memory Alloys(UK), pp 394–413Google Scholar
  11. 11.
    Melton K, Mercier O (1979) Fatigue of niti thermoelastic martensites. Acta Metall 27(1):137–144Google Scholar
  12. 12.
    Mammano G, Dragoni E (2011) Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions. Procedia Eng 10:3692–3707CrossRefGoogle Scholar
  13. 13.
    Kang G, Kan Q, Yu C, Song D, Liu Y (2012) Whole life transformation ratchetting and fatigue of superelastic niti alloy under uniaxial stress-controlled cyclic loading. Mater Sci Eng A 535:228–234CrossRefGoogle Scholar
  14. 14.
    Ataalla T, Leary M, Subic A (2012) Functional fatigue of shape memory alloys. Sustain Automot Technol 2012:39–43Google Scholar
  15. 15.
    Scirè Mammano G, Dragoni E (2012) Functional fatigue of ni-ti shape memory wires under various loading conditions. Int J FatigueGoogle Scholar
  16. 16.
    Bertacchini O, Lagoudas D, Calkins F, Mabe J (2008) Thermomechanical cyclic loading and fatigue life characterization of nickel rich niti shape-memory alloy actuators. In: The 15th international symposium on: smart structures and materials and nondestructive evaluation and health monitoring, pp 692916–692916, International Society for Optics and PhotonicsGoogle Scholar
  17. 17.
    Bertacchini O, Lagoudas D, Patoor E (2009) Thermomechanical transformation fatigue of tinicu sma actuators under a corrosive environment-part i: experimental results. Int J Fatigue 31(10):1571–1578CrossRefGoogle Scholar
  18. 18.
    Lagoudas D, Miller D, Rong L, Kumar P (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18(8):085021CrossRefGoogle Scholar
  19. 19.
    Figueiredo A, Modenesi P, Buono V (2009) Low-cycle fatigue life of superelastic niti wires. Int J Fatigue 31(4):751–758CrossRefGoogle Scholar
  20. 20.
    Runciman A, Xu D, Pelton A, Ritchie R (2011) An equivalent strain/coffin-manson approach to multiaxial fatigue and life prediction in superelastic nitinol medical devices. Biomaterials 32(22):4987–4993CrossRefGoogle Scholar
  21. 21.
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A (2012) Fatigue of pseudoelastic niti within the stress-induced transformation regime: a modified coffin-manson approach. Smart Mater Struct 21(11):112001CrossRefGoogle Scholar
  22. 22.
    Moumni Z, Van Herpen A, Riberty P (2005) Fatigue analysis of shape memory alloys: energy approach. Smart Mater Struct 14(5):S287CrossRefGoogle Scholar
  23. 23.
    Moumni Z, Zaki W, Maitournam H et al (2009) Cyclic behavior and energy approach to the fatigue of shape memory alloys. J Mech Mater Struct 4(2):395–411CrossRefGoogle Scholar
  24. 24.
    Soul H, Isalgue A, Yawny A, Torra V, Lovey F (2010) Pseudoelastic fatigue of niti wires: frequency and size effects on damping capacity. Smart Mater Struct 19(8):085006CrossRefGoogle Scholar
  25. 25.
    Dunand-Châtellet C, Moumni Z (2012) Experimental analysis of the fatigue of shape memory alloys through power-law statistics. Int J Fatigue 36(1):163–170CrossRefGoogle Scholar
  26. 26.
    Gloanec A, Bilotta G, Gerland M (2013) Deformation mechanisms in a tini shape memory alloy during cyclic loading. Mater Sci Eng A 564: 351–358Google Scholar
  27. 27.
    Rao A, Srinivasa A (2013) Experiments on functional fatigue of thermally activated shape memory alloy springs and correlations with driving force intensity. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring, pp 86890T–86890T, International Society for Optics and PhotonicsGoogle Scholar
  28. 28.
    Doraiswamy S, Rao A, Srinivasa A (2013) A two species thermodynamic preisach approach for simulating superelastic responses of shape memory alloys under tension and bending loading conditions. In: SPIE smart structures and materials+ nondestructive evaluation and health monitoring, pp 86890X–86890X, International Society for Optics and PhotonicsGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations