Skip to main content

Tangible Interfaces and Virtual Worlds: A New Environment for Inclusive Education

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8276))

Abstract

In this paper we present an educational application that integrates virtual worlds with tangible interfaces, in what is called “mixed reality”, using Kinect and OpenSim as the base technologies. The paper also discusses an experience on applying such technology for the inclusion at a concrete high school in Cunit (Spain). In the initial experiments, the use of mixed reality has shown a great potential for these education requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinect Education, http://www.kinecteducation.com/ (accessed on September 15, 2013)

  2. Kinect2Scratch, http://scratch.saorog.com/ (accessed on September 15, 2013)

  3. Dickey, M.D.: Three-dimensional virtual worlds and distance learning: Two case studies of Active Worlds as a medium for distance education. British Journal of Educational Technology 36(3), 439–451 (2005)

    Article  Google Scholar 

  4. Babu, S., Suma, E., Hodges, L.: Can immersive virtual humans teach social conversational protocols? In: IEEE Virtual Reality Conference, NC, March 10-14 (2007)

    Google Scholar 

  5. Sheehy, K., Ferguson, R.: Educational inclusion, new technologies. In: Scott, T.B., Livingston, J.L. (eds.) Leading Edge Educational Technology. Nova Science, NY (2008)

    Google Scholar 

  6. Sheehy, K.: Virtual Environments: Issues and Opportunities for Researching Inclusive Educational Practices. In: Peachey, A., Gillen, J., Livingstone, D., Smith-Robbins, S. (eds.) Researching Learning in Virtual Worlds. Human Computer Interaction Series (2010)

    Google Scholar 

  7. Peterson, M.: Towards a research agenda for the use of three-dimensional virtual worlds in language learning. CALICO Journal 29(1), 67–80 (2011)

    Article  Google Scholar 

  8. Espurna, http://www.espurna.cat (accessed on September 15, 2013)

  9. Ishii, H., Ullmer, B.: Tangible Bits: Towards Seamless Interfaces between People, Bits, and Atoms. In: Proceedings of CHI 1997, pp. 234–241 (1997)

    Google Scholar 

  10. Fitzmaurice, G.W., Ishii, H., Buxton, W.: Laying the Foundations for Graspable User Interfaces. In: Published in the Proceedings of CHI, May 7-11. ACM Press (2001)

    Google Scholar 

  11. Africano, D., Berg, S., Lindbergh, K., Lundholm, P., Nilbrink, F., Persson, A.: Designing tangible interfaces for children’s collaboration. Paper Presented at the CHI 2004 Extended Abstracts on Human Factors in Computing Systems, pp. 853–868 (2004)

    Google Scholar 

  12. Horn, M.S., Jacob, R.J.K.: Designing Tangible Programming Languages for Classroom Use. In: Proceedings of TEI 2007. First International Conference on Tangible and Embedded Interaction (2007)

    Google Scholar 

  13. Raffle, H., Parkes, A., Ishii, H.: Topobo: A constructive Assembly System with Kinetic Memory. In: Proceedings of CHI 2004, pp. 869–877. ACM Press (2004)

    Google Scholar 

  14. Scharf, F., Winkler, T., Herczeg, M.: Tangicons: algorithmic reasoning in a collaborative game for children in kindergarten and first class. Paper presented at the Proceedings of 7th International Conference on Interaction Design and Children, pp. 242–249 (2008)

    Google Scholar 

  15. Gallardo, D., Julià, C.F., Jordà, S.: Turtan: A tangible Programming Language for Creative Exploration. In: Proceedings of TABLETOP 2008, pp. 95–98. IEEE, Los Alamitos (2008)

    Google Scholar 

  16. Suzuki, H., Kato, H.: AlgoBlock: a tangible programming language, a tool for collaborative learning. In: Proceeedings of the 4th European Logo Conference (Eurologo 1993), Athens, Greece, pp. 297–303 (1993)

    Google Scholar 

  17. Stringer, M., Toye, E., Rode, J., Blackwell, A.F.: Teaching Rethorical Skills with Tangible User Interface. In: Proceedings of IDC 2004, pp. 11–18. ACM Press, New York (2004)

    Google Scholar 

  18. Zuckerman, O., Arida, S., Mitchel, R.: Extending Tangible Interfaces for Education: Digital Montessori-inspired Manipulatives. In: Proc. of CHI 2005, pp. 859–868 (2005)

    Google Scholar 

  19. Stanton, D., Bayon, V., Neale, H., Ghali, A., Benford, S., Cobb, S., Ingram, R., Wilson, J., Pridmore, T., O’Malley, C.: Classroom collaboration in the design of tangible interfaces for storytelling. In: CHI 2001 Seattle, pp. 482–489. ACM Press, Seattle (2001)

    Google Scholar 

  20. OpenSimulator, http://www.opensimulator.org (accessed on September 15, 2013)

  21. Kinect for Windows, http://www.microsoft.com/en-us/kinectforwindows/ (accessed on September 15, 2013)

  22. LibOpenMetaverse, http://www.openmetaverse.org (accessed on September 15, 2013)

  23. OpenCV, http://opencv.org (accessed on September 15, 2013)

  24. Xtec, http://www.xtec.cat/web/projectes/alumnatnou (accessed on September 15, 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Mateu, J., Lasala, M.J., Alamán, X. (2013). Tangible Interfaces and Virtual Worlds: A New Environment for Inclusive Education. In: Urzaiz, G., Ochoa, S.F., Bravo, J., Chen, L.L., Oliveira, J. (eds) Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction. Lecture Notes in Computer Science, vol 8276. Springer, Cham. https://doi.org/10.1007/978-3-319-03176-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03176-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03175-0

  • Online ISBN: 978-3-319-03176-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics