Skip to main content

Alexander–Orbach Conjecture Holds When Two-Point Functions Behave Nicely

  • Chapter
  • First Online:
Random Walks on Disordered Media and their Scaling Limits

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2101))

  • 1608 Accesses

Abstract

This chapter is based on the paper by Kozma-Nachmias [162] with some simplification by [197]. Our framework here is unimodular transitive graphs that contains \({\mathbb{Z}}^{d}\) as a typical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aizenman, D.J. Barsky, Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Aizenman, C.M. Newman, Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. M.T. Barlow, T. Kumagai, Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50, 33–65 (2006) (electronic)

    Google Scholar 

  4. D.J. Barsky, M. Aizenman, Percolation critical exponents under the triangle condition. Ann. Probab. 19, 1520–1536 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  6. Z.-Q. Chen, P. Kim, T. Kumagai, Discrete approximation of symmetric jump processes on metric measure spaces. Probab. Theory Relat. Fields 155, 703–749 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Crawford, A. Sly, Simple random walks on long range percolation clusters I: heat kernel bounds. Probab. Theory Relat. Fields 154, 753–786 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Crawford, A. Sly, Simple random walks on long range percolation clusters II: scaling limits. Ann. Probab. 41, 445–502 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Grimmett, Percolation, 2nd edn. (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  10. T. Hara, Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36, 530–593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Hara, R. van der Hofstad, G. Slade, Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31, 349–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Heydenreich, R. van der Hofstad, T. Hulshof, Random walk on the high-dimensional IIC. ArXiv:1207.7230 (2012)

    Google Scholar 

  13. R. van der Hofstad, A.A. Járai, The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114, 625–663 (2004)

    Article  MATH  Google Scholar 

  14. G. Kozma, Percolation on a product of two trees. Ann. Probab. 39, 1864–1895 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Kozma, The triangle and the open triangle. Ann. Inst. Henri Poincaré Probab. Stat. 47, 75–79 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Kozma, A. Nachmias, The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178, 635–654 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Kozma, A. Nachmias, Arm exponents in high dimensional percolation. J. Amer. Math. Soc. 24, 375–409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Nachmias, Y. Peres, Critical random graphs: diameter and mixing time. Ann. Probab. 36, 1267–1286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Sapozhnikov, Upper bound on the expected size of intrinsic ball. Electron. Commun. Probab. 15, 297–298 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Schonmann, Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Commun. Math. Phys. 219, 271–322 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumagai, T. (2014). Alexander–Orbach Conjecture Holds When Two-Point Functions Behave Nicely. In: Random Walks on Disordered Media and their Scaling Limits. Lecture Notes in Mathematics(), vol 2101. Springer, Cham. https://doi.org/10.1007/978-3-319-03152-1_6

Download citation

Publish with us

Policies and ethics