Skip to main content

Heat Kernel Estimates: General Theory

  • Chapter
  • First Online:
Random Walks on Disordered Media and their Scaling Limits

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2101))

  • 1704 Accesses

Abstract

In this chapter, we will consider various inequalities which imply (or which are equivalent to) the Nash-type heat kernel upper bound, i.e. \(p_{t}(x,y) \leq c_{1}{t}^{-\theta /2}\) for some θ > 0. We will also discuss Poincaré inequalities and their relations to heat kernel estimates in Sect. 3.3. We will prefer to discuss them under a general framework including weighted graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathcal{F}\) is a domain of the Dirichlet form. For example, when \(\mathcal{E}(f,f) = \frac{1} {2}\int _{{\mathbb{R}}^{d}}\vert \nabla f{\vert }^{2}dx\), then \(\mathcal{F} = {W}^{1,2}({\mathbb{R}}^{d})\), the classical Sobolev space. When we consider weighted graphs, we may take \(\mathcal{F} = {\mathbb{L}}^{2}(X,\mu )\) (or \(\mathcal{F} = {H}^{2}\)).

References

  1. S. Andres, M.T. Barlow, Energy inequalities for cutoff-functions and some applications. J. Reine Angew. Math. (to appear)

    Google Scholar 

  2. M.T. Barlow, Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoam. 20, 1–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. M.T. Barlow, Random Walks on Graphs. Lecture Notes for RIMS Lectures in 2005. Available at http://www.math.kyoto-u.ac.jp/~kumagai/rim10.pdf

  4. M.T. Barlow, Random Walks on Graphs (Cambridge University Press, to appear)

    Google Scholar 

  5. M.T. Barlow, R.F. Bass, Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356, 1501–1533 (2003)

    Article  MathSciNet  Google Scholar 

  6. M.T. Barlow, R.F. Bass, Z.-Q. Chen, M. Kassmann, Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361, 1963–1999 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. M.T. Barlow, R.F. Bass, T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Jpn. 58, 485–519 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. M.T. Barlow, A. Grigor’yan, T. Kumagai, On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Jpn. 64, 1091–1146 (2012)

    Google Scholar 

  9. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  10. E.A. Carlen, S. Kusuoka, D.W. Stroock, Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré Probab. Stat. 23, 245–287 (1987)

    MATH  MathSciNet  Google Scholar 

  11. Z.-Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory (Princeton University Press, Princeton, 2011)

    Google Scholar 

  12. T. Coulhon, Heat kernel and isoperimetry on non-compact Riemannian manifolds, in Contemporary Mathematics, vol. 338 (American Mathematical Society, Providence, 2003), pp. 65–99

    Google Scholar 

  13. T. Coulhon, Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141, 510–539 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. E.B. Fabes, D.W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96, 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes (de Gruyter, Berlin, 1994)

    Book  MATH  Google Scholar 

  17. A. Grigor’yan, The heat equation on non-compact Riemannian manifolds. Matem. Sbornik. 182, 55–87 (1991, in Russian) (English transl.) Math. USSR Sb. 72, 47–77 (1992)

    Google Scholar 

  18. A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoam. 10, 395–452 (1994)

    Google Scholar 

  19. A. Grigor’yan, L. Saloff-Coste, Heat kernel on manifolds with ends. Ann. Inst. Fourier (Grenoble) 59, 1917–1997 (2009)

    Google Scholar 

  20. P. Hajłasz, P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145(688), x+101 pp. (2000)

    Google Scholar 

  21. B.M. Hambly, T. Kumagai, Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries, in Fractal Geometry and Applications: A Jubilee of B. Mandelbrot, Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2 (American Mathematical Society, Providence, 2004), pp. 233–260

    Google Scholar 

  22. D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Lust-Piquard, Lower bounds on \(\left \Vert {K}^{n}\right \Vert _{1\rightarrow \infty }\) for some contractions K of L 2(μ), with some applications to Markov operators. Math. Ann. 303, 699–712 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Morris, Y. Peres, Evolving sets, mixing and heat kernel bounds. Probab. Theory Relat. Fields 133, 245–266 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Nash, Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. IMRN 2, 27–38 (1992)

    Article  MathSciNet  Google Scholar 

  27. L. Saloff-Coste, Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Notes, vol. 289 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  28. K.T. Sturm, Analysis on local Dirichlet spaces—III. The parabolic Harnack inequality. J. Math. Pure Appl. 75, 273–297 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumagai, T. (2014). Heat Kernel Estimates: General Theory. In: Random Walks on Disordered Media and their Scaling Limits. Lecture Notes in Mathematics(), vol 2101. Springer, Cham. https://doi.org/10.1007/978-3-319-03152-1_3

Download citation

Publish with us

Policies and ethics