Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2101))

Abstract

Around mid-1960s, mathematical physicists began to analyze properties of disordered media such as structures of polymers and networks, growth of molds and crystals (see for example, [44]). They observed anomalous behavior for random walks/diffusions on the media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alexander, R. Orbach, Density of states on fractals: “fractons”. J. Phys. (Paris) Lett. 43, L625–L631 (1982)

    Article  Google Scholar 

  2. M.T. Barlow, Diffusions on fractals, in Ecole d’été de probabilités de Saint-Flour XXV—1995. Lecture Notes in Mathematics, vol. 1690 (Springer, New York, 1998)

    Google Scholar 

  3. M.T. Barlow, Random Walks on Graphs (Cambridge University Press, to appear)

    Google Scholar 

  4. M.T. Barlow, J.-D. Deuschel, Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38, 234–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. M.T. Barlow, A.A. Járai, T. Kumagai, G. Slade, Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278, 385–431 (2008)

    Article  MATH  Google Scholar 

  6. D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  7. N. Berger, M. Biskup, Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Berger, M. Biskup, C.E. Hoffman, G. Kozma, Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44, 374–392 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Biskup, Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Biskup, T.M. Prescott, Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12, 1323–1348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  12. T. Coulhon, Heat kernel and isoperimetry on non-compact Riemannian manifolds, in Contemporary Mathematics, vol. 338 (American Mathematical Society, Providence, 2003), pp. 65–99

    Google Scholar 

  13. P.G. de Gennes, La percolation: un concept unificateur. La Recherche 7, 919–927 (1976)

    Google Scholar 

  14. G. Grimmett, Percolation, 2nd edn. (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  15. H. Kesten, The incipient infinite cluster in two-dimensional percolation. Probab. Theory Relat. Fields 73, 369–394 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Kesten, Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22, 425–487 (1986)

    MATH  MathSciNet  Google Scholar 

  17. J. Kigami, Analysis on Fractals (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  18. G. Kozma, A. Nachmias, The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178, 635–654 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Kumagai, J. Misumi, Heat kernel estimates for strongly recurrent random walk on random media. J. Theor. Probab. 21, 910–935 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Mathieu, Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130, 1025–1046 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Mathieu, A. Piatnitski, Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Sapozhnikov, Upper bound on the expected size of intrinsic ball. Electron. Commun. Probab. 15, 297–298 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumagai, T. (2014). Introduction. In: Random Walks on Disordered Media and their Scaling Limits. Lecture Notes in Mathematics(), vol 2101. Springer, Cham. https://doi.org/10.1007/978-3-319-03152-1_1

Download citation

Publish with us

Policies and ethics