Skip to main content

On Existence of Optimal Solutions to Boundary Control Problem for an Elastic Body with Quasistatic Evolution of Damage

  • Chapter
  • First Online:
Continuous and Distributed Systems

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 211))

Abstract

We study an optimal control problem for the mixed boundary value problem for an elastic body with quasistatic evolution of an internal damage variable. We use the damage field \(\zeta =\zeta (t,x)\) as an internal variable which measures the fractional decrease in the stress-strain response. When \(\zeta =1\) the material is damage-free, when \(\zeta =0\) the material is completely damaged, and for \(0<\zeta <1\) it is partially damaged. We suppose that the evolution of microscopic cracks and cavities responsible for the damage is described by a nonlinear parabolic equation, whereas the model for the stress in elastic body is given as \(\varvec{\sigma }=\zeta (t,x) A\mathbf {e}({\mathbf {u}})\). The optimal control problem we consider in this paper is to minimize the appearance of micro-cracks and micro-cavities as a result of the tensile or compressive stresses in the elastic body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchitte, G., Buttazzo, G.: Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3, 139–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buttazzo, G., Varchon, N.: On the optimal reinforcement of an elastic membrane. Riv. Mat. Univ. Parma. 4(7), 115–125 (2005)

    MathSciNet  Google Scholar 

  3. Buttazzo, G., Kogut, P.I.: Weak optimal controls in coefficients for linear elliptic problems. Revista Matematica Complutense 24, 83–94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  5. Kogut, P.I., Leugering, G.: Optimal \(L^1\)-control in coefficients for Dirichlet elliptic problems: \(H\)-optimal solutions. ZAA 31(1), 31–53 (2011)

    MathSciNet  Google Scholar 

  6. Kogut, P.I., Leugering, G.: Optimal \(L^1\)-control in coefficients for Dirichlet elliptic problems: \(W\)-optimal solutions. J. Optim. Theory Appl. 150(2), 205–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuttler, K.L.: Quasistatic evolution of damage in an elastic-viscoplastic material. Electron. J. Differ. Eqns. 147, 1–25 (2005)

    Google Scholar 

  8. Lions, J.-L.: Quelques Méthodes de Résolution des Problèms aux Limites Non Linéares. Dunon, Paris (1969)

    Google Scholar 

  9. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Google Scholar 

  10. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura. Appl. 146, 65–96 (1987)

    Google Scholar 

  11. Zhikov, V.V., Pastukhova, S.E.: Homogenization of degenerate elliptic equations. Siberian Math. J. 49(1), 80–101 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Kogut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kogut, P.I., Leugering, G. (2014). On Existence of Optimal Solutions to Boundary Control Problem for an Elastic Body with Quasistatic Evolution of Damage. In: Zgurovsky, M., Sadovnichiy, V. (eds) Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-03146-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03146-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03145-3

  • Online ISBN: 978-3-319-03146-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics