Skip to main content

Algebra and Geometry Through Hamiltonian Systems

  • Chapter
  • First Online:
Continuous and Distributed Systems

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 211))

Abstract

Hamiltonian systems are considered to be the prime tool of classical and quantum mechanics. The proper investigation of such systems usually requires deep results from algebra and geometry. Here we present several results which in some sense go the opposite way: the knowledge about the integrable system enables us to obtain results on geometric and algebraic structures which naturally appear in such problems. All the results were obtained by employees of the Chair of Differential Geometry and Applications in Moscow State University in 2011–2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrendt, G.: Automorphism groups of pictures. J. Graph Theor. 14, 423–426 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertrand, J.: Théorème relatif au mouvement d’un point attiré vers un centre fixe. C.R. Acad. Sci. Paris 77, 849–853 (1873)

    Google Scholar 

  3. Biggs, N., White, A.: Permutation Groups and Combinatorial Structures. London Math. Soc. Lect. Notes, Cambridge University Press, Cambridge (1979)

    Google Scholar 

  4. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems: Geometry, Topology and Classification. Taylor & Francis Group, 752 p. (1999)

    Google Scholar 

  5. Bolsinov, A.V., Fomenko, A.T.: Some actual unsolved problems on topology of integrable Hamiltonian systems. Topological methods in theory of Hamiltonian systems, pp. 5–23. Factorial, Moscow (1998)

    Google Scholar 

  6. Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flows on suspensions of automorphisms of tori. Proc. Steklov Inst. Math. 231, 42–58 (2000)

    Google Scholar 

  7. Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flows with positive topological entropy. Invent. Math. 140, 639–650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolsinov, A.V., Izosimov, A.M., Konyaev, A.Y., Oshemkov, A.A.: Algebra and topology of integrable systems: research problems. Trudy seminara po vectornomu i tenzornomu analizu 28, 119–191 (2012)

    Google Scholar 

  9. Brailov, Y.A: Algebraic properties of atom symmetries. Topological Methods in Theory of Hamiltonian Systems, pp. 24–40. Factorial, Moscow (1998)

    Google Scholar 

  10. Brailov, YuA, Kudryavtseva, E.A.: Stable topological non-conjugacy of Hamiltonian systems on two-dimensional surfaces. Mosc. Univ. Math. Bull. 54(2), 20–27 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Cori, R., Machi, A.: Construction of maps with prescribed automorphism group. Theor. Comp. Sci. 21, 91–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragovic, V., Radnovic, M.: Bifurcations of Liouville tori in elliptical billiards. Regul. Chaotic Dyn. 14(4–5), 479–494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fedoseev, D.A., Kudryavtseva, E.A., Zagryadsky, O.A.: Generalization of Bertrand’s theorem to surfaces of revolution (in Russian). Sb. Math. 203(8), 39–78 (2012)

    Article  MathSciNet  Google Scholar 

  14. Feinberg, V.Z.: Automorphism groups of trees. Dokl. Akad. Nauk BSSR. 13, 1065–1067 (1969)

    MathSciNet  Google Scholar 

  15. Fokicheva, V.V.: Description the topology of the hamiltonian integrable system billiard within an ellipse. Vestn. Moscow. Univ. Math. Mech. 5, 31–35 (2012)

    MathSciNet  Google Scholar 

  16. Fokicheva, V.V.: Description the topology of the hamiltonian integrable system "billiard in an domain bounded by the segments of the confocal quadrics". Vestn. Moscow. University. Math. Mech (to appear)

    Google Scholar 

  17. Fomenko, A.T.: Morse theory of integrable Hamiltonian systems. Soviet Math. Dokl. 33(2), 502–506 (1986)

    MATH  Google Scholar 

  18. Fomenko, A.T.: The symplectic topology of completely integrable Hamiltonian systems. Russian Math. Surv. 44(1), 181–219 (1989)

    Google Scholar 

  19. Fomenko, A.T.: The symplectic topology of completely integrable Hamiltonian systems. Russian Math. Surv. 44(1), 181–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fomenko, A., Zieschang, H.: On typical topological properties of integrable Hamiltonian systems. Math. USSR-Izv. 32(2), 385-412 (1989)

    Google Scholar 

  21. Fomenko, A., Zieschang, H.: A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom. Math. USSR-Izv. 36(3), 567–596 (1991)

    Google Scholar 

  22. Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakten Gruppe. Comp. Math. 6, 239–250 (1938)

    MathSciNet  Google Scholar 

  23. Frucht, R.: Graphs of degree three with a given abstract group. Can. J. Math. 1, 365–378 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fujii, K.: A note on finite groups which act freely on closed surfaces. Hiroshima Math. J. 5, 261–267 (1975), II. Hiroshima Math. J. 6, 457–463 (1976)

    Google Scholar 

  25. Gutkin, E.: Billiard dynamics: a survey with the emphasis on open problem. Regul. Chaot. Dyn. 8(1), 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kantonistova, E.O.: Integer lattices of action variables for the generalized Lagrange case. Vestnik MGU. 1, 54–58 (2012)

    MathSciNet  Google Scholar 

  27. Konyaev, A.Y.: Classification of Lie algebras with coadjoint orbits of general position of dimension two. Submitted to Sb. Math.

    Google Scholar 

  28. Korotkevich, A.A.: Integrable Hamiltonian systems on low-dimensional Lie algebras. Sb. Math. 200(12), 1731–1766 (2009)

    Google Scholar 

  29. Kudryavtseva, E.A., Fomenko, A.T.: Symmetries groups of nice Morse functions on surfaces [in Russian]. Doklady Akademii Nauk. 446(6), 615–617 (2012)

    Google Scholar 

  30. Kudryavtseva, E.A., Nikonov, I.M., Fomenko, A.T.: Maximally symmetric cell decompositions of surfaces and their coverings. Sb. Math. 199(9), 1263–1359 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kudryavtseva, E.A., Nikonov, I.M., Fomenko, A.T.: Symmetric and irreducible abstract polyhedra [in Russian]. V. A. Sadovnichiy Anniv. Coll. Articles, Contemporary Problems of Mathematics and Mechanics. 3(2), 58–97 (2009)

    Google Scholar 

  32. Mendelsohn, E.: On the group of automorphisms of Steiner triple and quadruple systems. J. Combination Theor. (A) 25, 97–104 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Milnor, J.W.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  34. Nguyen, T.Z.: Decomposition of nondegenerate singularities of integrable Hamiltonian systems. Lett. Math. Phys. 33, 187–193 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oshemkov, A.A.: Morse functions on two-dimensional surfaces. Encoding features. Proc. Steklov Inst. Math. 205, 119–127 (1995)

    Google Scholar 

  36. Patera, J., Sharp, R., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17(6), 986–994 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Santoprete, M.: Gravitational and harmonic oscillator potentials on surfaces of revolution. J. Math. Phys. (2008). doi:10.1063/1.2912325

  38. Shashkov, S.A.: Commutative homogeneous spaces with one-dimensional stabilizer. Izv. RAN. Ser. Mat. 76(4), 185–206 (2012) doi:10.1070/IM2012v076n04ABEH002605

    Google Scholar 

  39. Siran, J., Skoviera, M.: Orientable and non-orientable maps with given automorphism groups. Aust. J. Combination 7, 47–53 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Government grant of the Russian Federation for support of research projects implemented by leading scientists, in the Federal State Budget Educational Institution of Higher Professional Education Lomonosov Moscow State University under the agreement No. 11.G34.31.0054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly T. Fomenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fomenko, A.T., Konyaev, A. (2014). Algebra and Geometry Through Hamiltonian Systems. In: Zgurovsky, M., Sadovnichiy, V. (eds) Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-03146-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03146-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03145-3

  • Online ISBN: 978-3-319-03146-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics