Skip to main content

Application of Sub-second Annealing for Diluted Ferromagnetic Semiconductors

  • Chapter
Subsecond Annealing of Advanced Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 192))

  • 1304 Accesses

Abstract

The dilute ferromagnetic semiconductor GaMnAs provides a great promise for its application in spintronics, which combines two degrees of freedom: charge and spin. Mn ions which substitute Ga sublattice sites provide both local magnetic moments and itinerant holes. The magnetic properties of GaMnAs can be controlled by manipulating free carriers via electrical gating. However, the preparation of ferromagnetic GaMnAs presents a big challenge due to the low solubility of Mn in GaAs. To overcome the low solid solubility limit of transition metal dopants in semiconductors, one needs highly nonequilibrium methods to introduce enough dopants and a short-time annealing to activate them. Both ion implantation and pulsed-laser (or flash-lamp) annealing occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants. The subsequent short-time annealing deposits energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Such a nonequilibrium process maintains the supersaturation induced by ion implantation. In this chapter, we review the application of sub-second annealing in the activation of Mn implanted GaAs as well as GaP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, A.H. MacDonald, Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006)

    Article  Google Scholar 

  2. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988)

    Article  Google Scholar 

  3. A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, Y. Merle d’Aubigné, Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys. Rev. Lett. 79, 511–514 (1997)

    Article  Google Scholar 

  4. R. Janisch, P. Gopal, N.A. Spaldin, Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys. Condens. Matter 17, R657–R689 (2005)

    Article  Google Scholar 

  5. H. Munekata, H. Ohno, S. Vonmolnar, A. Segmuller, L.L. Chang, L. Esaki, Diluted magnetic III–V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989)

    Article  Google Scholar 

  6. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996)

    Article  Google Scholar 

  7. R.P. Campion, K.W. Edmonds, L.X. Zhao, K.Y. Wang, C.T. Foxon, B.L. Gallagher, C.R. Staddon, High-quality GaMnAs films grown with arsenic dimers. J. Cryst. Growth 247, 42–48 (2003)

    Article  Google Scholar 

  8. K.M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, J.K. Furdyna, Effect of the location of Mn sites in ferromagnetic Ga1−x Mn x As on its Curie temperature. Phys. Rev. B 65, 201303 (2002)

    Article  Google Scholar 

  9. K. Olejník, M.H.S. Owen, V. Novák, J. Mašek, A.C. Irvine, J. Wunderlich, T. Jungwirth, Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga, Mn)As: a surface oxide control study. Phys. Rev. B 78, 054403 (2008)

    Article  Google Scholar 

  10. S.U. Campisano, G. Foti, P. Baeri, M.G. Grimaldi, E. Rimini, Solute trapping by moving interface in ion-implanted silicon. Appl. Phys. Lett. 37, 719–722 (1980)

    Article  Google Scholar 

  11. J. Shi, J.M. Kikkawa, R. Proksch, T. Schaffer, D.D. Awschalom, G. Medeirosribeiro, P.M. Petroff, Assembly of submicrometer ferromagnets in gallium-arsenide semiconductors. Nature 377, 707–710 (1995)

    Article  Google Scholar 

  12. J. Shi, J.M. Kikkawa, D.D. Awschalom, G. Medeiros-Ribeiro, P.M. Petroff, K. Babcock, Magnetic properties and imaging of Mn-implanted GaAs semiconductors. J. Appl. Phys. 79, 5296–5298 (1996)

    Article  Google Scholar 

  13. P.J. Wellmann, J.M. Garcia, J.L. Feng, P.M. Petroff, Formation of nanoscale ferromagnetic MnAs crystallites in low-temperature grown GaAs. Appl. Phys. Lett. 71, 2532–2534 (1997)

    Article  Google Scholar 

  14. W. Skorupa, T. Gebel, R.A. Yankov, S. Paul, W. Lerch, D.F. Downey, E.A. Arevalo, Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing. J. Electrochem. Soc. 152, G436–G440 (2005)

    Article  Google Scholar 

  15. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978)

    Google Scholar 

  16. D. Bürger, S. Zhou, J. Grenzer, H. Reuther, W. Anwand, V. Gottschalch, M. Helm, H. Schmidt, The influence of annealing on manganese implanted GaAs films. Nucl. Instrum. Methods B 267, 1626 (2009)

    Article  Google Scholar 

  17. F.L. Bloom, A.C. Young, R.C. Myers, E.R. Brown, A.C. Gossard, E.G. Gwinn, Tunneling through MnAs particles at a GaAs p+n+ junction. J. Vac. Sci. Techol. B 24, 1639–1643 (2006)

    Article  Google Scholar 

  18. S.S. Kular, B.J. Sealy, K.G. Stephens, D.R. Chick, Q.V. Davis, J. Edwards, Pulsed laser annealing of zinc implanted GaAs. Electron. Lett. 14, 85–87 (1978)

    Article  Google Scholar 

  19. C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young Jr., Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon. J. Appl. Phys. 51, 738–749 (1980)

    Article  Google Scholar 

  20. M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro, M.R. Pillai, M.J. Aziz, M.C. Ridgway, Ferromagnetic GaMnAs produced by ion implantation and pulsed-laser melting. Appl. Phys. Lett. 82, 1251–1253 (2003)

    Article  Google Scholar 

  21. M.A. Scarpulla, B.L. Cardozo, R. Farshchi, W.M. Hlaing Oo, M.D. McCluskey, K.M. Yu, O.D. Dubon, Ferromagnetism in Ga1−x Mn x P: evidence for inter-Mn exchange mediated by localized holes within a detached impurity band. Phys. Rev. Lett. 95, 207204 (2005)

    Article  Google Scholar 

  22. D. Bürger, S. Zhou, M. Pandey, C.S. Viswanadham, J. Grenzer, O. Roshchupkina, W. Anwand, H. Reuther, V. Gottschalch, M. Helm, H. Schmidt, Application of pulsed laser annealing to ferromagnetic GaMnAs. Phys. Rev. B 81, 115202 (2010)

    Article  Google Scholar 

  23. T. Omiya, F. Matsukura, T. Dietl, Y. Ohno, T. Sakon, M. Motokawa, H. Ohno, Magnetotransport properties of (Ga, Mn)As investigated at low temperature and high magnetic field. Physica E 7, 976 (2000)

    Article  Google Scholar 

  24. H. Ohno, H. Munekata, T. Penney, S. von Molnár, L.L. Chang, Magnetotransport properties of p-type (In, Mn)As diluted magnetic III–V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992)

    Article  Google Scholar 

  25. T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, Magnetic and magnetotransport properties of new III–V diluted magnetic semiconductors: GaMnAs. J. Appl. Phys. 81, 4865–4867 (1997)

    Article  Google Scholar 

  26. F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, Transport properties and origin of ferromagnetism in (Ga, Mn)As. Phys. Rev. B 57, R2037 (1998)

    Article  Google Scholar 

  27. X. Liu, Y. Sasaki, J.K. Furdyna, Ferromagnetic resonance in Ga1−x Mn x As: effects of magnetic anisotropy. Phys. Rev. B 67, 205204 (2003)

    Article  Google Scholar 

  28. M.A. Scarpulla, R. Farshchi, P.R. Stone, R.V. Chopdekar, K.M. Yu, Y. Suzuki, O.D. Dubon, Electrical transport and ferromagnetism in Ga1−x Mn x As synthesized by ion implantation and pulsed-laser melting. J. Appl. Phys. 103, 073913 (2008)

    Article  Google Scholar 

  29. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, R.G. Wilson, Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga,Mn)P:C. Phys. Rev. Lett. 89, 107203 (2002)

    Article  Google Scholar 

  30. I.G. Bucsa, R.W. Cochrane, S. Roorda, Segregation and formation of MnP particles during rapid thermal annealing of Mn-implanted InP and GaP. J. Appl. Phys. 106, 013914 (2009)

    Article  Google Scholar 

  31. P.N. Hai, S. Yada, M. Tanaka, Phase decomposition diagram of magnetic alloy semiconductor. J. Appl. Phys. 109, 073919 (2011)

    Article  Google Scholar 

  32. N. Peng, C. Jeynes, M.J. Bailey, D. Adikaari, V. Stolojan, R.P. Webb, High concentration Mn ion implantation in Si. Nucl. Instrum. Methods B 267, 1623 (2009)

    Article  Google Scholar 

  33. S. Zhou, D. Bürger, A. Mücklich, C. Baumgart, W. Skorupa, C. Timm, P. Oesterlin, M. Helm, H. Schmidt, Hysteresis in the magnetotransport of manganese-doped germanium: evidence for carrier-mediated ferromagnetism. Phys. Rev. B 81, 165204 (2010)

    Article  Google Scholar 

  34. D. Bürger, S. Zhou, M. Höwler, X. Ou, Gy.J. Kovacs, H. Reuther, A. Mücklich, W. Skorupa, M. Helm, H. Schmidt, Hysteretic anomalous Hall effect in a ferromagnetic, Mn-rich Ge:Mn nanonet. Appl. Phys. Lett. 100, 012406 (2012)

    Article  Google Scholar 

  35. D. Bürger, M. Seeger, S. Zhou, W. Skorupa, H. Schmidt, Transition metal diffusion in diluted magnetic Si and GaAs prepared by pulsed laser processing. J. Appl. Phys. 111, 054914 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF-VH-NG-713) is gratefully acknowledged. H.S. would like to thank the Deutsche Forschungsgemeinschaft for funding (SCHM1663/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, S., Bürger, D., Schmidt, H. (2014). Application of Sub-second Annealing for Diluted Ferromagnetic Semiconductors. In: Skorupa, W., Schmidt, H. (eds) Subsecond Annealing of Advanced Materials. Springer Series in Materials Science, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-03131-6_15

Download citation

Publish with us

Policies and ethics