Skip to main content

Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond

  • Chapter
Book cover Subsecond Annealing of Advanced Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 192))

Abstract

In the following chapter, the authors conduct a literature survey of current advances in state-of-the-art low-cost, flexible electronics. A new emerging trend in the design of modern semiconductor devices dedicated to scaling-up, rather than reducing, their dimensions is presented. To realize volume manufacturing, alternative semiconductor materials with superior performance, fabricated by innovative processing methods, are essential. This review provides readers with a general overview of the material and technology evolution in the area of macroelectronics. Herein, the term macroelectronics (MEs) refers to electronic systems that can cover a large area of flexible media. In stark contrast to well-established micro- and nano-scale semiconductor devices, where property improvement is associated with downscaling the dimensions of the functional elements, in macroelectronic systems their overall size defines the ultimate performance (Sun and Rogers in Adv. Mater. 19:1897–1916, 2007). The major challenges of large-scale production are discussed. Particular attention has been focused on describing advanced, short-term heat treatment approaches, which offer a range of advantages compared to conventional annealing methods. There is no doubt that large-area, flexible electronic systems constitute an important research topic for the semiconductor industry. The ability to fabricate highly efficient macroelectronics by inexpensive processes will have a significant impact on a range of diverse technology sectors. A new era “towards semiconductor volume manufacturing…” has begun.

The chapter is organized in three main sections. The candidate materials for flexible, large-area electronics (LAEs) are discussed in Sect. 14.1. Given the limitation of this chapter, only selected groups of the semiconductors are presented. The target materials are Si-based inorganic thin-films and their intriguing, organic competitors. The general attributes of the materials suitable for macroelectronics are revised. The challenges associated with volume manufacturing with emphasis on the evolution of the heating technologies are demonstrated in Sect. 14.2. The final conclusions along with the authors’ considerations on the LAEs’ perspectives are given in Sect. 14.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term second-generation photovoltaics refers to thin-film photovoltaic devices, which are based on inorganic semiconductor materials that are more absorbing than crystalline Si and can be manufactured directly onto large area, flexible substrates [56].

References

  1. Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007)

    Article  Google Scholar 

  2. L. Łukasiak, A. Jakubowski, History of semiconductors. Journal of Telecommunication and Information Technology 1, 3–9 (2010)

    Google Scholar 

  3. S. Wagner, M. Wu, B.-G.R. Min, I.-C. Cheng, Polycrystalline Silicon Thin Film Transistors. Solid State Phenomena, vols. 80–81 (Trans Tech Publications, Zurich, 2001), pp. 325–336

    Google Scholar 

  4. I.-C. Cheng, S. Wagner, Overview of flexible electronics technology, in Flexible Electronics: Materials and Applications, ed. by W.S. Wong, A. Salleo (Springer, New York, 2009), pp. 1–28

    Chapter  Google Scholar 

  5. S. Wagner, H. Gleskova, I.-C. Cheng, M. Wu, Silicon for thin-film transistors. Thin Solid Films 430, 15–19 (2003)

    Article  Google Scholar 

  6. R.C. Chittick, J.H. Alexander, H.F. Sterling, The preparation and properties of amorphous silicon. J. Electrochem. Soc. 16, 77–81 (1969)

    Article  Google Scholar 

  7. F.R. Jeffrey, G.D. Vernstrom, F.E. Aspen, R.L. Jacobson, Fabrication of amorphous silicon devices on plastic substrates. Mat. Res. Soc. Symp. Proc. 49, 41–46 (1985)

    Article  Google Scholar 

  8. R. Ruggeri, V. Privitera, C. Spinella, E. Fazio, F. Neri, R. De Bastiani, M.G. Grimaldi, M.A. Di Stefano, S. Di Marco, G. Mannino, Crystallization of deposited amorphous silicon by infrared laser irradiation. J. Electochem. Soc. 158, H25–H29 (2011)

    Article  Google Scholar 

  9. E. Ma, S. Wagner, a-Si TFTs on thin steel foil substrates: how thin can we go? in Flat-Panel Displays and Sensors: Principles, Materials and Processes. Mat. Res. Soc. Symp. Proc., vol. 558 (2000), pp. 381–386.

    Google Scholar 

  10. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and application for large area electronics: solution-based approaches. Chem. Rev. 100, 3–24 (2010)

    Article  Google Scholar 

  11. S. Guha, J. Yang, Thin Film Silicon Photovoltaic Technology—From Innovation to Commercialization. Mat. Res. Soc. Symp. Proc., vol. 1245 (2010), pp. A01.

    Google Scholar 

  12. K. Beernink, A. Banerjee, J. Yang, K. Lord, F. Liu, G. DeMaggio, G. Pietka, C. Worrel, S. Guha, Flexible Lightweight, Amorphous Silicon Based Solar Cells on Polymer Substrate for Space and Near-Space Applications. Mater. Res. Soc. Symp. Proc., vol. 1321 (2011) pp. 81–92

    Google Scholar 

  13. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965)

    Google Scholar 

  14. S.D. Theiss, S. Wagner, Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Letters 17, 578–580 (1996)

    Article  Google Scholar 

  15. M. Wu, K. Pangal, J.C. Sturm, S. Wagner, High electron mobility polycrystalline silicon thin-film transistors on steel foil substrates. Appl. Phys. Lett. 75, 2244–2246 (1999)

    Article  Google Scholar 

  16. A. Nathan, P. Servati, K.S. Karim, D. Striakhiliev, A. Sazonov, Thin film transistor integration on glass and plastic substrates in amorphous silicon technology. IEE Proc.-Circuits Devices Syst. 150, 329–338 (2003)

    Article  Google Scholar 

  17. V. Privitera, S. Scalese, A. La Magna, A. Pecora, M. Cuscunà, L. Maiolo, A. Minotti, D. Simeone, L. Mariucci, G. Fortunato, L. Caristia, F. Mangano, S. Di Marco, M. Camalleri, S. Ravesi, S. Coffa, M.G. Grimaldi, R. De Bastiani, P. Badalà, S. Bagiante, Low-temperature annealing combined with laser crystallization for polycrystalline silicon TFTs on polymeric substrate. J. Electochem. Soc. 155, H764–H770 (2008)

    Article  Google Scholar 

  18. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Organic electronics on paper. Appl. Phys. Lett. 84, 2673–2675 (2004)

    Article  Google Scholar 

  19. F.R. Jeffrey, G.D. Vernstrom, F.E. Aspen, R.L. Jacobson, Fabrication of Amorphous Silicon Devices on Plastic Substrates. Mater. Res. Soc. Symp. Proc., vol. 49 (1985), pp. 41–46

    Google Scholar 

  20. A. Sazonov, D. Striakhilev, C.-H. Lee, A. Nathan, Low-temperature and thin film transistors for flexible electronics. Proceedings of IEEE 93, 1420–1428 (2005)

    Article  Google Scholar 

  21. A. Sazonov, C. McArthur, Sub-100 C a-Si:H thin-film transistors on plastic substrates with silicon nitride gate dielectrics. J. Vac. Sci. Technology. A 22, 2052–2055 (2004)

    Article  Google Scholar 

  22. J. van den Brand, J. de Baets, T. van Mol, A. Dietzel, Systems-in-foil—devices, fabrication processes and reliability issues. Microelectron. Reliab. 48, 1123–1128 (2008) (Proceedings of ESREF 2008)

    Article  Google Scholar 

  23. K.H. Cherenack, A.Z. Kattamis, B. Hekmatshoar, J.C. Sturm, S. Wagner, Amorphous-silicon thin-film transistors fabricated at 300 degrees C on a free-standing foil substrate of clear plastic. IEEE Electron. Dev. Lett. 28, 1004–1006 (2007)

    Article  Google Scholar 

  24. B. Hekmatshoar, K.H. Cherenack, A.Z. Kattamis, K. Long, S. Wagner, J.C. Sturm, Highly stable amorphous-silicon thin-film transistors on clear plastic. Appl. Phys. Lett. 93, 032103 (2008)

    Article  Google Scholar 

  25. P.A. Penz, K. Surtani, W. Wen, M.R. Johnson, D. Kane, L. Sanders, B. Culley, J. Fish, Plastic substrate LCD, in Proc. SID, vol. XII (1981), pp. 116–117

    Google Scholar 

  26. J.R. Sheats, Roll-to-roll manufacturing of thin film electronics. Proc. SPIE 4688, 240–248 (2002)

    Article  Google Scholar 

  27. Y. Ichikawa, T. Yoshida, T. Hama, H. Sakai, K. Harashima, Production technology for amorphous silicon-based flexible solar cells. Solar Energy Mater. Solar Cells 66, 107–115 (2001)

    Article  Google Scholar 

  28. G. Qin, H.-C. Yuan, H. Yang, W. Zhou, Z. Ma, High-performance flexible thin-film transistors fabricated using print-transferable polycrystalline silicon membranes on a plastic substrate. Semicond. Sci. Technol. 26, 025005 (2011)

    Article  Google Scholar 

  29. T. Sameshima, S. Usui, M. Sekiya, XeCl excimer laser annealing used in the fabrication of poly-Si TFTs. IEEE Electron Device Lett. 7, 276–278 (1986)

    Article  Google Scholar 

  30. N.D. Young, M.J. Trainor, S.-Y. Yoon, D.J. McCulloch, R.W. Wilks, A. Pearson, S. Godfrey, P.W. Green, S. Roosendall, E. Hallworth, Low Temperature Poly-Si on Flexible Polymer Substrates for Active Matrix Displays and Other Applications. Mater. Res. Symp. Proc., vol. 769 (2003), pp. 17–28

    Google Scholar 

  31. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18, 345202 (2007)

    Article  Google Scholar 

  32. J.A. Rogers, Z. Bao, Printed plastic electronics and paperlike displays. J. Polym. Sci. Part A: Polym. Chem. 40, 3327–3334 (2002)

    Article  Google Scholar 

  33. http://eetimes.com/electronics-news/4139131/High-k-strides-reopen-door-to-germanium

  34. Y. Kamata, High-k/Ge MOSFETs for future nanoelectronics. Materials Today 11, 30–38 (2008)

    Article  Google Scholar 

  35. E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves, G. Lavareda, H. Águas, I. Ferreira, C.N. Carvalho, R. Martins, High field-effect mobility zinc oxide thin film transistors produced at room temperature. J. Non-Cryst. Solids 806–809, 338–340 (2004)

    Google Scholar 

  36. R.P. Davies, C.R. Abemathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Review of recent progress advances in transition and lanthanide metal-doped GaN and ZnO. Chemical Engineering Communication 196, 1030–1053 (2009)

    Article  Google Scholar 

  37. G.X. Wang, J. Park, D. Wexler, M.S. Park, J.H. Ahn, Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires. Inorganic Chemistry 46, 4778–4780 (2007)

    Article  Google Scholar 

  38. Y. Sun, S. Kim, I. Adesida, J.A. Rogers, Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl. Phys. Lett. 87, 083501 (2005)

    Article  Google Scholar 

  39. P.K. Weimer, TFT—a new thin-film transistor. Proc. IRE 50, 1462–1469 (1962)

    Article  Google Scholar 

  40. E. Menard, K.J. Lee, D.Y. Khang, R.G. Nuzzo, J.A. Rogers, A printable form of silicon for high performance thin film transistors on plastic substrate. Appl. Phys. Lett. 84, 5398–5400 (2004)

    Article  Google Scholar 

  41. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  Google Scholar 

  42. J.R. Sheats, Manufacturing and commercialization issues in organic electronics. J. Mater. Res. 19, 1974–1989 (2004)

    Article  Google Scholar 

  43. R. Platz, S. Wagner, Gate dielectrics for organic field-effect transistors. Adv. Mater. 17, 1705–1725 (2005)

    Article  Google Scholar 

  44. Th.B. Singh, N.S. Sariciftci, Progress in plastic electronics devices. Annu. Rev. Mater. Res. 36, 199–230 (2006)

    Article  Google Scholar 

  45. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1606 (2010)

    Article  Google Scholar 

  46. Z.-P. Yin, Y.-A. Huang, N.-B. Bu, X.-M. Wang, Y.-L. Xiong, Inkjet printing for flexible electronics: materials, processes and equipment. Chinese Science Bulletin 55, 3383–3407 (2010)

    Article  Google Scholar 

  47. G.H. Heilmeier, L.A. Zanoni, Surface studies of α-copper phthalocyanine films. J. Phys. Chem.. Solids 25, 603–611 (1964)

    Article  Google Scholar 

  48. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)

    Article  Google Scholar 

  49. D.J. Gundlach, Y.Y. Lin, T.N. Jackson, Pentacene organic thin film transistors—molecular ordering and mobility. IEEE Electron. Dev. Lett. 18, 87–89 (1997)

    Article  Google Scholar 

  50. U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. Blochwitz-Nimoth, H. Klauk, Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. J. Mater. Chem. 22, 4273–4277 (2012)

    Article  Google Scholar 

  51. U. Zschieschang, M.J. Kang, K. Takimiya, T. Sekitani, T. Someya, T.W. Canzler, A. Werner, J. Blochwitz-Nimoth, H. Klauk, Flexible low-voltage organic thin-film transistors and circuits based on C-10-DNTT. Org. Electron. 12, 1370–1375 (2011)

    Article  Google Scholar 

  52. K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, T. Someya, Organic transistors with high thermal stability for medical applications. Nature Communication 3, 723 (2012)

    Article  Google Scholar 

  53. P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells based on small molecular weight organic thin film. Nature 425, 158–162 (2003)

    Article  Google Scholar 

  54. M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications 3, 770 (2012)

    Article  Google Scholar 

  55. Y.Y. Lin, D.J. Gundlach, S. Nelson, T.N. Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18, 606–608 (1997)

    Article  Google Scholar 

  56. B. Kippelen, J.-L. Brédas, Organic photovoltaics. Energy Environ. Sci. 2, 251–261 (2009)

    Article  Google Scholar 

  57. K. Bock, Polymer electronics systems—polytronics. Proc. IEEE 93, 1400–1405 (2005)

    Article  Google Scholar 

  58. http://www.novaled.com

  59. X. Zhan, D. Zhu, Conjugated polymers for high-efficiency organic photovoltaics. Polym. Chem. 1, 409–419 (2010)

    Article  Google Scholar 

  60. T.P. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. a review. Surface and Coatings Technology 206, 742–752 (2011)

    Article  Google Scholar 

  61. S.E. Gledhill, B. Scott, B.A. Gregg, Organic and nano-structured composite photovoltaics: an overview. J. Mater. Res. 20, 3167–3179 (2005)

    Article  Google Scholar 

  62. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009)

    Article  Google Scholar 

  63. S. Logothetidis, Flexible organic electronic devices. Materials Science and Engineering B 152, 96–104 (2010)

    Article  Google Scholar 

  64. H. Zhang, M.D. Poliks, B. Sammakia, A roll-to-roll photolithography process for establishing accurate multilayer registration on large area flexible films. Journal of Display Technology 6, 571–578 (2010)

    Article  Google Scholar 

  65. M. Geissler, Y. Xia, Pattering: principles and some new developments. Adv. Mater 16, 1249–1269 (2004)

    Article  Google Scholar 

  66. J. Noh, D. Yeom, C. Lim, H. Cha, J. Han, J. Kim, Y. Park, V. Subramanian, G. Cho, Scalability of roll-to-roll gravure-printed electrodes on plastic foils. IEEE Transaction on Electronics Packaging Manufacturing 33, 275–283 (2010)

    Article  Google Scholar 

  67. C. Strohhofer, G. Klink, M. Feil, A. Drost, D. Bollmann, D. Hemmetzberger, K. Bock, Roll-to-roll microfabrication of polymer microsystems. Meas. Control 40, 80–83 (2007)

    Article  Google Scholar 

  68. H. Zhang, M.D. Poliks, B. Sammakia, A roll-to-roll photolithography process for establishing accurate multilayer registration on large area flexible films. Journal of Display Technology 6, 571–578 (2010)

    Article  Google Scholar 

  69. M. Poliks et al., Toolset for confronting the challenges of R2R production of advanced microelectronics and displays, in 51st the Society of Vacuum Coaters Annual Technical Conf, vol. 40 (2008), pp. 19–24

    Google Scholar 

  70. Y. Huand, J. Chen, Z. Yin, Y. Xiong, Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress. IEEE Transactions on Components, Packaging and Manufacturing Technology 1, 1368–1377 (2011)

    Article  Google Scholar 

  71. K. Jain, M. Klosner, M. Zemel, S. Raghunandan, Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc. of the IEEE 93, 1500–1510 (2005)

    Article  Google Scholar 

  72. A.G. Cullis, Transient annealing of semiconductors by laser, electron-beam and radiant heating techniques. Rep. Prog. Phys. 48, 1155–1233 (1985)

    Article  Google Scholar 

  73. W. Skorupa, T. Gebel, R.A. Yankov, S. Paul, W. Lerch, D.F. Downey, E.A. Arevalo, Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing. J. Electrochem. Soc. 152, G436–G440 (2005)

    Article  Google Scholar 

  74. G. Fisicaro, M. Italia, V. Privitera, G. Piccitto, K. Huet, J. Venturini, A. La Magna, Solid phase phosphorous activation in implanted silicon by excimer laser irradiation. J. Appl. Phys. 109, 113513 (2011)

    Article  Google Scholar 

  75. C. Sabatier, S. Rack, H. Beseaucele, J. Venturini, T. Hoffmann, Y. Thomas, E. Rosseel, J. Steenbergen, Laser annealing of double implanted layers for IGBT power devices, in Proc. of the 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors (2008), pp. 177–181

    Google Scholar 

  76. P. Timans, J. Gelpey, S. McCoy, W. Lerch, S. Paul, Millisecond Annealing: Past, Present and Future. Mater. Res. Soc. Symp., vol. 912 (2006), p. 0912-C01-01

    Google Scholar 

  77. P. Timans, H.-Y. Zhi, J. Gelpey, S. Mccoy, W. Lerch, S. Paul, D. Bolze, H. Kheyrandish, New approaches for characterization of advanced annealing techniques for ultra-shallow junction formation, in Proc. of 17th International Conference on Ion Implantation Technology, vol. 1066 (2008), pp. 67–70

    Google Scholar 

  78. R.A. McMahon, M.P. Smith, K.A. Seffen, M. Voelskow, W. Anwand, W. Skorupa, Flash-lamp annealing of semiconductor materials – application and process models. Vacuum 81, 1301–1305 (2006)

    Article  Google Scholar 

  79. G. Fortunato, A. Pecora, L. Maiolo, M. Cuscuna, D. Simeone, A. Minotti, L. Mariucci, Excimer laser annealing for low-temperature polysilicon thin film transistor fabrication on plastic substrates, in Proc. of the 15th IEEE International Conference on Advanced Thermal Processing of Semiconductors (2007), pp. 301–305

    Google Scholar 

  80. S.K. Sundram, E. Mazur, Inducing and probing non-thermal transition in semiconductors using femtosecond laser pulses. Nature 1, 217–224 (2002)

    Article  Google Scholar 

  81. R.L. Cohen, J.S. Williams, L.C. Feldman, K.W. West, Thermally assisted flash annealing of silicon and germanium. Appl. Phys. Lett. 33, 751–753 (1978)

    Article  Google Scholar 

  82. D. Panknin, E. Wieser, R. Klabes, H. Syhre, Dose dependence of the flash lamp annealing on the diffusion behavior of ion-implanted boron profiles. Phys. Status Solidi A 77, 533–559 (1983)

    Google Scholar 

  83. T. Gebel, L. Rebohle, R. Fendler, W. Hentsch, W. Skorupa, M. Voelskow, W. Anwand, R.A. Yankov, Millisecond annealing with flashlamps: tool and process challenges, in Proc. of 14th Int. Conf. Advanced Thermal Processing of Semiconductors (2006), pp. 47–55

    Google Scholar 

  84. J.C.C. Fan, Applications of Beam-Solid Interactions in Semiconductors Material and Device Processing. Mat. Res. Soc. Symp. Proc., vol. 35 (1985), pp. 39–50

    Google Scholar 

  85. W. Skorupa, R.A. Yankov, M. Voelskow, W. Anwand, D. Pankin, R.A. McMahon, M. Smith, T. Gebel, L. Rebohle, R. Fendler, w. Hentsch, Advanced thermal processing of semiconductor materials in the msec-range, in Proc. of 13th Int. Conf. Advanced Thermal Processing of Semiconductors (2005), pp. 53–71

    Google Scholar 

  86. J.F. Gibbons, D.M. Dobkin, M.E. Greiner, J.L. Hoyt, W.G. Opyd, Device Applications of Rapid Thermal Annealing. Mat. Res. Soc. Symp. Proc., vol. 23 (1983), pp. 37–50

    Google Scholar 

  87. T. Itani, M. Yoshioka, T. Owada, Y. Imaoka, H. Murayama, T. Kusuda, Low-resistance ultrashallow extension formed by optimized flash lamp annealing. IEEE Trans. Semicond. 16, 417–422 (2003)

    Article  Google Scholar 

  88. P. Baeri, E. Rimini, Laser annealing of silicon. Mater. Chem. Phys. 46, 169–177 (1996)

    Article  Google Scholar 

  89. G.K. Giust, T.W. Sigmon, Laser-processed thin-film transistors fabricated from sputtered amorphous-silicon films. IEEE Trans. Electron Devices 47, 207–213 (2000)

    Article  Google Scholar 

  90. G.A. Kachurin, N.B. Pridachin, L.S. Smirnov, Annealing of radiation defects by laser radiation pulses. Fiz. Tekh. Poluprov. 9, 946 (1975)

    Google Scholar 

  91. K. Murakami, M. Kawabe, K. Gamo, S. Namba, Y. Aoyagi, Dynamic behavior of pulsed-laser annealing in ion-implanted silicon: measurements of the time dependent optical reflectance. Phys. Lett. A 70, 332–334 (1979)

    Article  Google Scholar 

  92. T. Sameshima, S. Usui, M. Sekiya, XeCl excimer laser annealing used in the fabrication of poly-Si TFTs. IEEE Electron Device Lett. 7, 276–278 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Wiesenhütter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wiesenhütter, K., Skorupa, W. (2014). Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond. In: Skorupa, W., Schmidt, H. (eds) Subsecond Annealing of Advanced Materials. Springer Series in Materials Science, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-03131-6_14

Download citation

Publish with us

Policies and ethics