Skip to main content

Decomposition of Time Series Using the Generalised Berlin Method (VBV)

  • Chapter
  • First Online:
  • 1882 Accesses

Part of the book series: Advanced Studies in Theoretical and Applied Econometrics ((ASTA,volume 48))

Abstract

The Generalised Berlin Method (Verallgemeinertes Berliner Verfahren, or VBV) is a flexible procedure to extract multiple unobservable components from a discrete or continuous time series. The finite number of observations doesn’t have to be equidistant. For economic time series (mostly monthly or quarterly data) the interesting components are trend (economic cycle) and season. For financial data (daily, hourly, or even higher frequency data) two components are of interest: a long-time component (length of support, i.e. 201 observations) and a short-time component (length of support, i.e. 41–61 observations). The VBV has control parameters to result in components satisfying subjective preferences in the shape of these components. In a special case the solutions coincide with the known Berlin Method (Berliner Verfahren, or BV) in its base version.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akaike, H. (1980). Seasonal adjustment by a bayesian modeling. Journal of Time Series Analysis, 1, 1–13.

    Article  Google Scholar 

  • Akaike, H., & Ishiguro, M. (1980). BAYSEA, a bayesian seasonal adjustment program. Computer Science Monographs (Vol. 13). Tokyo: The Institute for Statistical Methods.

    Google Scholar 

  • Bell, W. R. (1998). An overview of regARIMA modeling. Research report. Statistical Research Division, U.S. Census Bureau.

    Google Scholar 

  • Bieckmann, B. (1987). Ein allgemeines Modell zur Zeitreihenzerlegung. Diplomarbeit am Fachbereich Statistik, Universität Dortmund.

    Google Scholar 

  • Cleveland, W. S., Devlin, S. J., & Terpenning, I. J. (1982). The SABL seasonal and calendar adjustment procedures. In O. D. Anderson (Ed.), Time series analysis: Theory and practice (Vol. 1, pp. 539–564). Amsterdam: North-Holland.

    Google Scholar 

  • Dagum, E. B. (1980). The X-11-ARIMA seasonal adjustment method. Technical Report 12-564E. Statistics, Canada.

    Google Scholar 

  • Deutsche Bundesbank. (1999). The changeover from the seasonal adjustment method Census X-11 to Census X-12-ARIMA. Monthly Report, Deutsche Bundesbank, 51(9), 39–50.

    Google Scholar 

  • Edel, K., Schäffer, K.-A., & Stier, W. (Eds.). (1997).Analyse saisonaler Zeitreihen. Heidelberg: Physica.

    Google Scholar 

  • European Commission. (2006). The joint harmonised EU programme of business and consumer surveys (pp. 113–114). Special report no 5, Annex A.2.

    Google Scholar 

  • Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., & Chen, B.-C. (1998). New capabilities and methods of the X-12-ARIMA seasonal adjustment program. Journal of Business and Economic Statistics, 16(2), 127–176.

    Google Scholar 

  • Foldesi, E., Bauer, P., Horvath, B., & Urr, B. (2007). Seasonal adjustment methods and practices. European Commission Grant 10300.2005.021-2005.709, Budapest.

    Google Scholar 

  • Gómez, V., & Maravall, A. (1998). Guide for using the program TRAMO and SEATS. Working Paper 9805, Research Department, Banco de Espãna.

    Google Scholar 

  • Hebbel, H. (1978). Splines in linearen Räumen und Anwendungen in der Datenanalyse (Dissertation). Universität Dortmund.

    Google Scholar 

  • Hebbel, H. (1981). Exponentielle und trigonometrische Splinefunktionen. Forschungsbericht 1981/4 Fachbereich Statistik, Universität Dortmund.

    Google Scholar 

  • Hebbel, H. (1982). Lineare Systeme, Analysen, Schätzungen und Prognosen (unter Verwendung von Splinefunktionen). Habilitationsschrift. Universität Dortmund.

    Google Scholar 

  • Hebbel, H. (1984). Glättung von Zeitreihen über Zustandsraummodelle. Forschungsbericht 1984/17 Fachbereich Statistik, Universität Dortmund.

    Google Scholar 

  • Hebbel, H. (1997). Verallgemeinertes Berliner Verfahren VBV. In K. Edel, K.-A. Schäffer, & W. Stier (Eds.), Analyse saisonaler Zeitreihen (pp. 83–93). Heidelberg: Physica.

    Chapter  Google Scholar 

  • Hebbel, H. (2000). Weiterentwicklung der Zeitreihenzerlegung nach dem Verallgemeinerten Berliner Verfahren (VBV). Discussion Papers in Statistics and Quantitative Economics, Universität der Bundeswehr, Hamburg.

    Google Scholar 

  • Hebbel, H., & Heiler, S. (1985). Zeitreihenglättung in einem Fehler-in-den-Variablen-Modell. In G. Buttler, H. Dickmann, E. Helten, & F. Vogel (Eds.), Statistik zwischen Theorie und Praxis (pp. 105–17). Festschrift für K-A Schäffer zur Vollendung seines 60. Lebensjahres. Göttingen:V&R.

    Google Scholar 

  • Hebbel, H., & Heiler, S. (1987). Trend and seasonal decomposition in discrete time. Statistische Hefte, 28, 133–158.

    Article  Google Scholar 

  • Hebbel, H., & Heiler, S. (1987). Zeitreihenzerlegung über ein Optimalitätskriterium. Allgemeines Statistisches Archiv, 71, 305–318.

    Google Scholar 

  • Hebbel, H., & Kuhlmeyer, N. (1983). Eine Weiterentwicklung von Heiler’s Berliner Verfahren. Forschungsbericht 1983/9 Fachbereich Statistik, Universität Dortmund.

    Google Scholar 

  • Heiler, S., & Feng, Y. (2004). A robust data-driven version of the Berlin method. In R. Metz, M. Lösch, & K. Edel (Eds.), Zeitreihenanalyse in der empirischen Wirtschaftsforschung (pp. 67–81). Festschrift für Winfried Stier zum 65. Geburtstag, Stuttgart: Lucius & Lucius.

    Google Scholar 

  • Heiler, S., & Michels, P. (1994). Deskriptive und Explorative Datenanalyse. München/Wien: Oldenbourg.

    Google Scholar 

  • Heuer, C. (1991). Ansätze zur simultanen Schätzung von Trend- und Klimaparametern in Jahrringreihen aus der Dendrologie. Diplomarbeit Fachbereich Statistik, Universität Dortmund.

    Google Scholar 

  • Kitagawa, G. (1985). A smoothness priors-time varying AR coefficient modelling of nonstationary covariance time series. The IEEE Transactions on Automatic Control, 30, 48–56.

    Article  Google Scholar 

  • Koopman, S. J., Harvey, A. C., Doornik, J. A., & Shephard, N. (2010). Structural time series analyser, modeller and predictor: STAMP 8.3. London: Timberlake Consultants Ltd.

    Google Scholar 

  • Ladiray, D., & Quenneville, B. (2001). Seasonal adjustment with the X-11 method. Lecture notes in statistics (Vol. 158). New York: Springer.

    Google Scholar 

  • Michel, O. (2008). Zeitreihenzerlegung mittels des mehrkomponentigen Verallgemeinerten Berliner Verfahrens (Dissertation). Fachbereich Mathematik und Informatik, Universitt Bremen.

    Google Scholar 

  • Nullau, B., Heiler, S., Wäsch, P., Meisner, B., & Filip, D. (1969). Das “Berliner Verfahren”. Ein Beitrag zur Zeitreihenanalyse. Deutsches Institut für Wirtschaftsforschung (DIW), Beiträge zur Strukturforschung 7. Berlin: Duncker & Humblot.

    Google Scholar 

  • Pauly, R., & Schlicht, E. (1983). Desciptive seasonal adjustment by minimizing pertubations. Empirica, 1, 15–28.

    Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/.

  • Schlicht, E. (1976). A seasonal adjustment principle and a seasonal adjustment method derived from this principle. The Journal of the Acoustical Society of America, 76, 374–378.

    Google Scholar 

  • Shiskin, J., Young, A. H., & Musgrave, J. C. (1967). The X-11 variant of the census method II seasonal adjustment programm. Technical Paper 15, U.S. Department of Commerce, Bureau of the Census.

    Google Scholar 

  • Speth, H.-Th. (2006). The BV4.1 procedure for decomposing and seasonally adjusting economic time series. Wiesbaden: Statistisches Bundesamt.

    Google Scholar 

  • Statistisches Bundesamt. (2013). Volkswirtschaftliche Gesamtrechnungen. Fachserie 18 Reihe 1.3, 1. Vierteljahr 2013 Wiesbaden.

    Google Scholar 

  • Uhlig, S., & Kuhbier, P. (2001a). Methoden der Trendabschätzung zur Überprüfung von Reduktionszielen im Gewässerschutz. Umweltbundesamt, Berlin (Texte 49/01, UBA-FB 00204).

    Google Scholar 

  • Uhlig, S., & Kuhbier, P. (2001b). Trend methods for the assessment of effectiveness of reduction measures in the water system. Federal Environmental Agency (Umwelbundesamt), Berlin (Texte 80/01, UBA-FB 00204/e).

    Google Scholar 

  • U.S. Census Bureau, Time Series Research Staff. (2013). X-13ARIMA-SEATS Reference Manual. Washington, DC: Statistical Research Division, U.S. Census Bureau.

    Google Scholar 

  • Whaba, G. (1990). Spline models for observational data. In CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: SIAM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Hebbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hebbel, H., Steuer, D. (2015). Decomposition of Time Series Using the Generalised Berlin Method (VBV). In: Beran, J., Feng, Y., Hebbel, H. (eds) Empirical Economic and Financial Research. Advanced Studies in Theoretical and Applied Econometrics, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-03122-4_2

Download citation

Publish with us

Policies and ethics