Skip to main content

Fluid Pressure and Failure Modes of Sandstones

  • Chapter
  • First Online:
Book cover Rheological and Seismic Properties of Solid-Melt Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 804 Accesses

Abstract

The existence of the fractures and fluids in the rocks, together with the associated pore pressures can cause significant changes of rock properties. The role of fluids, their interaction with microstructure, and their influence on the internal stresses and pressures in a rock are all important when considering partially molten rocks, as well as when understanding porous rocks (e.g. sediments) in reservoir settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin, A. M. (1993). Tensile fracture of rock at high confining pressure: Implications for dike propagation. Journal of Geophysical Research, 98(B9), 15919–15935.

    Article  Google Scholar 

  2. White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3–4), 300–312.

    Article  Google Scholar 

  3. Mukerji, T., Dutta, N., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part I: The rock physics basis. Canadian Society of Exploration Geophysicists Recorder, 27, 36–57.

    Google Scholar 

  4. Dutta, N., Mukerji, T., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part II: Field applications. Canadian Society of Exploration Geophysicists Recorder, 27 59–73.

    Google Scholar 

  5. Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review Of Earth And Planetary Sciences, 23, 287–336.

    Article  Google Scholar 

  6. Xu, X., Hofmann, R., Batzle, M., & Tshering, T. (2006). Influence of pore pressure on velocity in low-porosity sandstone: Implications for time-lapse feasibility and pore-pressure study. Geophysical Prospecting, 54(5), 565–573.

    Article  Google Scholar 

  7. Horii, H., & Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 319(1549), 337–374.

    Google Scholar 

  8. Baud, P., Zhu, W., & Wong, T. -f. (2000). Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research, 105(B7), 16371–16389.

    Google Scholar 

  9. Zhang, J., Wong, T. -F., & Davis, D. M. (1990). Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95(B1), 341–352.

    Google Scholar 

  10. Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic p- and s-wave attenuation in oceanic basalt. Geophysical Journal International, 145(1), 172–186.

    Article  Google Scholar 

  11. King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.

    Article  Google Scholar 

  12. Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.

    Article  Google Scholar 

  13. Waza, T., Kurita, K., & Mizutani, H. (1980). The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics, 67(1–2), 25–34.

    Article  Google Scholar 

  14. Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte Der Mathematisch-Naturwissenschaftlichen Classe Der Kaiserlichen Akademie, 132, 105–124.

    Google Scholar 

  15. Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.

    Google Scholar 

  16. Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rrocks. Journal of Geophysical Research, 77(20), 3731–3743.

    Article  Google Scholar 

  17. Hofmann, R., Xu, X., Batzle, M., Prasad, M., Furre, A.-K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? The Leading Edge, 24(12), 1256–1260.

    Article  Google Scholar 

  18. Vasquez, G. F., Vargas Junior, Ed A, Ribeiro, C. J. B., Leão, M., & Justen, J. C. R. (2009). Experimental determination of the effective pressure coefficients for brazilian limestones and sandstones. Revista Brasileira de Geofísica, 27(1), 43–53.

    Article  Google Scholar 

  19. Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.

    Article  Google Scholar 

  20. Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.

    Article  Google Scholar 

  21. Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in berea and michigan sandstones. Geophysics, 62(4), 1163–1176.

    Article  Google Scholar 

  22. Christensen, N. I., & Wang, H. F. (1985). The influence of pore pressure and confining pressure on dynamic elastic properties of berea sandstone. Geophysics, 50(2), 207–213.

    Article  Google Scholar 

  23. Gardner, G. H. F., Wyllie, M. R. J., & Droschak, D. M. (1965). Hysteresis in the velocity-pressure characteristics of rocks. Geophysics, 30(1), 111–116.

    Article  Google Scholar 

  24. Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a gulf coast pleistocene basin. Geology, 23(1), 45–48.

    Article  Google Scholar 

  25. Cuss, R. J., Rutter, E. H., & Holloway, R. F. (2003). The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. International Journal of Rock Mechanics and Mining Sciences, 40(6), 847–862.

    Article  Google Scholar 

  26. Hatchell, P., & Bourne, S. (2005). Rocks under strain. The Leading Edge, 24(12), 1222–1225.

    Article  Google Scholar 

  27. Chapman, M., Zatsepin, S. V., & Crampin, S. (2002). Derivation of a microstructural poroelastic model. Geophysical Journal International, 151(2), 427–451.

    Article  Google Scholar 

  28. Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448.

    Article  Google Scholar 

  29. O’Connell, R. J., & Budiansky, B. (1977). Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, 82(36), 5719–5735.

    Article  Google Scholar 

  30. Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks. Geophysical Research Letter, 6(1), 1–4.

    Article  Google Scholar 

  31. Gassmann, F. (1951b). Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.

    Google Scholar 

  32. Siggins, A. F., & Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letter, 30(2), 1089.

    Article  Google Scholar 

  33. Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.

    Article  Google Scholar 

  34. Al-Wardy, W., & Zimmerman, R. W. (2004). Effective stress law for the permeability of clay-rich sandstones. Journal of Geophysical Research, 109(B4), B04203.

    Google Scholar 

  35. Wong, T-f, David, C., & Zhu, W. (1997). he transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research, 102(B2), 3009–3025.

    Article  Google Scholar 

  36. Nur, A., & Simmons, G. (1969). The effect of viscosity of a fluid phase on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 99–108.

    Article  Google Scholar 

  37. Lu, C., & Jackson, I. (2006). Low-frequency seismic properties of thermally cracked and argon-saturated granite. Geophysics, 71(6), F147–F159.

    Article  Google Scholar 

  38. Mavko, G., & Vanorio, T. (2010). The influence of pore fluids and frequency on apparent effective stress behavior of seismic velocities. Geophysics, 75(1), N1–N7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Ying Chien .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chien, SY. (2014). Fluid Pressure and Failure Modes of Sandstones. In: Rheological and Seismic Properties of Solid-Melt Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-03098-2_7

Download citation

Publish with us

Policies and ethics