Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 249))

Abstract

Microarray is a technology which allows biologists to potentially monitor the activity of all the genes of an organism. Microarrays, widely recognized as the next revolution in molecular biology, enables scientists to analyze genes, proteins and other biological molecules on a genomic scale. Image processing is the first step in knowledge discovery from the microarray. The process of extracting features consists of three stages: gridding, segmentation and quantification. Gridding is to assign each spot with individual coordinates. This paper presents a fully automatic grid configuration algorithm for detecting the microarray image spots as input, and makes no assumptions about the size of the spots, and number of rows and columns in the grid. The approach is based on the detection of an optimum sub image. This method is capable of processing the image automatically and does not demand any input parameters. Experimental result shows that this method is highly efficient method of gridding that uses intensity projection profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, S., Yan, H.: Microarray image processing based on clustering and morphological analysis. In: Proceedings of the First Asia-Pacific Bioinformatics Conference on sBioinformatics 2003, vol. 19, pp. 111–118 (2003)

    Google Scholar 

  2. Draghici, S.: Data Analysis Tools for DNA Microarrays. Chapman and Hall/CRC (2003)

    Google Scholar 

  3. M. Schena Microarray Analysis. Wiley-Liss (2002)

    Google Scholar 

  4. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metaboblic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)

    Article  Google Scholar 

  5. Schena, M., Shalom, D., Davis, R., Brown, P.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995), Stekel, D.: Microarray bioinformatics. Cambridge University Press, Cambridge (2003), Bowtell, D., Sambrook, J.: DNA microarrays: A molecular cloning manual. Cold Spring Harbor Laboratory Press (2003)

    Google Scholar 

  6. Rueda, L., Qin, L.: An Improved Clustering-Based Approach for DNA Microarray Image Segmentation. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 17–24. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Ceccarelli, M., Petrosino, A.: The Orientation Matching Transform Approach to Circular Object Detection. In: Proceedings of IEEE International Conference on Image Processing, pp. 712–715 (2001)

    Google Scholar 

  8. Anandhavalli, M., Mishra, C., Ghose, M.K.: Analysis of Microarray Image Spot Intensity: A Comparative Study. International Journal of Computer Theory and Engineering 1(5), 1793–8201 (2009)

    Google Scholar 

  9. Larese, M.G., Gomez, J.C.: Automatic Spot Addressing in cDNA Microarray Images. JCS&T 8(2) (July 2008)

    Google Scholar 

  10. Deepa, J., Thomas, T.: Automatic Gridding of DNA Microarray Images Using Optimum Sub-image. International Journal of Recent Trends in Engineering 1(4) (May 2009)

    Google Scholar 

  11. Deepa, J., Thomas, T.: A New Gridding Technique for High Density Microarray Images Using Intensity Projection Profile of Best Sub Image. Computer Engineering Intelligent Systems 4(1) (2013) ISSN 2222-1719

    Google Scholar 

  12. Rueda, L., Rezaeian, I.: A Fully automatic gridding method for cDNA microarray images. BMC Bioinformatics (April 21, 2011)

    Google Scholar 

  13. Labib, F.E.-Z., Fouad, I., Mabrouk, M., Sharawy, A.: An Efficient Fully Automated Method for Gridding Microarray Images. American Journal of Biomedical Engineering 2(3), 115–119 (2012)

    Article  Google Scholar 

  14. Sorin, D.: Data analysis tool for DNA Microarrays. Mathematical biology and medicine series. Chapman&Hall/CRC, London (2003)

    Google Scholar 

  15. Stekel, D.: MicroarrayBioinformatics. Cambridge University Press, NewYork (2003)

    Google Scholar 

  16. Lonardi, S., Luo, Y.: Gridding of microarray images. In: Proceedings of IEEE Computational Systems Bioinformatics Conferences, CSB 2004 (2004), doi:0-7695-2194-0/04

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Srimani, P.K., Mahesh, S. (2014). An Effective Automated Method for the Detection of Grids in DNA Microarray. In: Satapathy, S., Avadhani, P., Udgata, S., Lakshminarayana, S. (eds) ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India- Vol II. Advances in Intelligent Systems and Computing, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-319-03095-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03095-1_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03094-4

  • Online ISBN: 978-3-319-03095-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics