A Database-Centric Architecture for Home-Based Health Monitoring

  • Wagner O. de Morais
  • Jens Lundström
  • Nicholas Wickström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8277)


Traditionally, database management systems (DBMSs) have been employed exclusively for data management in infrastructures supporting Ambient Assisted Living (AAL) systems. However, DBMSs provide other mechanisms, such as for security, dependability, and extensibility that can facilitate the development, use, and maintenance of AAL applications. This work utilizes such mechanisms, particularly extensibility, and proposes a database-centric architecture to support home-based healthcare applications. An active database is used to monitor and respond to events taking place in the home, such as bed-exits. In-database data mining methods are applied to model early night behaviors of people living alone. Encapsulating the processing into the DBMS avoids transferring and processing sensitive data outside of database, enables changes in the logic to be managed on-the-fly, and reduces code duplication. As a result, such an approach leads to better performance and increased security and privacy, and can facilitate the adaptability and scalability of AAL systems. An evaluation of the architecture with datasets collected in real homes demonstrated the feasibility and flexibility of the approach.


Healthcare technology ambient assisted living active data-bases in-database processing machine learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demiris, G., Hensel, B.K.: Technologies for an aging society: a systematic review of “smart home” applications. In: Yearbook of Medical Informatics, pp. 33–40 (2008)Google Scholar
  2. 2.
    Kang, H.G., Mahoney, D.F., Hoenig, H., Hirth, V.A., et al.: In situ monitoring of health in older adults: Technologies and issues. Journal of the American Geriatrics Society 58(8), 1579–1586 (2010)CrossRefGoogle Scholar
  3. 3.
    Rashidi, P., Cook, D.J.: Mining and monitoring patterns of daily routines for assisted living in real world settings. In: Proceedings of the 1st ACM International Health Informatics Symposium, pp. 336–345 (2010)Google Scholar
  4. 4.
    Chan, M., Estève, D., Escriba, C., Campo, E.: A review of smart homes - present state and future challenges. Computer Methods and Programs in Biomedicine 91(1), 55–81 (2008)CrossRefGoogle Scholar
  5. 5.
    Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics 17(3), 579–590 (2013)CrossRefGoogle Scholar
  6. 6.
    Tazari, M.R., Furfari, F., Valero, F., Hanke, S., et al.: The universAAL reference model for AAL. In: Handbook on Ambient Assisted Living-Technology for Healthcare, Rehabilitation and Well-being. AISE Book Series, vol. 11, pp. 610–625 (2012)Google Scholar
  7. 7.
    Fagerberg, G., et al.: Platforms for AAL applications. In: Lukowicz, P., Kunze, K., Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 177–201. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Eckl, R., MacWilliams, A.: Smart home challenges and approaches to solve them: A practical industrial perspective. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009. CCIS, vol. 53, pp. 119–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Demiris, G., Thompson, H.J., Reeder, B., Wilamowska, K., et al.: Using informatics to capture older adults wellness. Int. Journal of Medical Informatics (2011)Google Scholar
  10. 10.
    The PostgreSQL Global Development Group: Postgresql 9.2 documentation (2013)Google Scholar
  11. 11.
    Ordonez, C.: Data set preprocessing and transformation in a database system. Intelligent Data Analysis 15(4), 613–631 (2011)MathSciNetGoogle Scholar
  12. 12.
    Paton, N.W., Daz, O.: Active database systems. ACM Computing Surveys (CSUR) 31(1), 63–103 (1999)CrossRefGoogle Scholar
  13. 13.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction 16(2-4), 97–166 (2001)CrossRefGoogle Scholar
  14. 14.
    Kim, J.E., Boulos, G., Yackovich, J., Barth, T., et al.: Seamless integration of heterogeneous devices and access control in smart homes. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 206–213 (2012)Google Scholar
  15. 15.
    Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin, E., et al.: The MADlib analytics library: or MAD skills, the SQL, vol. 5, pp. 1700–1711 (2012)Google Scholar
  16. 16.
    Thörner, R., Persson, M., Eriksson, H., Isaksson, A., Lundström, J.: Trygg om natten. Technical report, Centre for Health Technology in Halland, Halmstad University, Halmstad, Sweden (2011)Google Scholar
  17. 17.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14 (1995)Google Scholar
  19. 19.
    Guralnik, V., Haigh, K.Z.: Learning Models of Human Behaviour with Sequential Patterns. In: Proceedings of the AAAI 2002 workshop “Automation as Caregiver”, pp. 24–30 (2002)Google Scholar
  20. 20.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Record 22, 207–216 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Wagner O. de Morais
    • 1
  • Jens Lundström
    • 1
  • Nicholas Wickström
    • 1
  1. 1.School of Information Science, Computer and Electrical EngineeringHalmstad UniversityHalmstadSweden

Personalised recommendations